ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005

Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005

Страница № 078.

Учебник: Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин]. — 5-е изд. — М.: Просвещение, 2005. — 285 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, «78», 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Равенство (1) означает, что при умножении степеней одной и той же буквы показатели степеней складывают, а основание оставляют прежним.

Равенство (2) означает, что при возведении в степень произведения букв надо возвести в эту степень каждую букву и результаты перемножить.

Равенство (3) означает, что при возведении степени буквы в степень надо взять показателем степени произведение показателей степеней, а основание оставить прежним.

Справедливость равенств (1), (2) и (3) подтверждается следующими примерами:

а3а2 = ааа • аа = ааааа = а5 = а3+2, а1а3 = а• ааа = аааа = а4 = а1 +3,

(abf = ab-ab = aa-bb = а2Ь2,

2)3 = а2 • а2 • а2 = аааааа = а6 = а23.

Для упрощения записи одночлена одинаковые буквы заменяют соответствующими степенями этих букв. Например, пишут:

( — 3) aaab = (— 3) а3Ь.

Сформулируем еще три свойства одночленов.

Свойство 5. Два одночлена считают равными, если один из них получен из другого заменой произведения множителей, каждый из которых есть одна и та же буква, соответствующей степенью этой буквы, например:

5a2bab3 = 5a3b\ 2а3ЬааЗЬ2 = 2а5ЗЬ3.

Свойство 6. Если перед одночленом поставить знак плюс, то получится одночлен, равный исходному, например:

-|-abc = abc,

+ (-7)ab = (-7)ab.

Свойство 7. Если перед одночленом поставить знак минус, то получится одночлен, равный исходному, умноженному на число

(— 1), например:

— ab = ( — 1) ab,

-(-7)ab = (-l)(-7)ab.

Пользуясь свойством 7, получаем равенства:

-(-7ab) = (- \)((-l)7ab) = (-\)(-l)7ab = 7ab,

— ( — а) = ( — \)( — \)а = а.

Одночлен и такой же одночлен, но со знаком минус перед ним называют противоположными одночленами. Например, одночлены 3а2Ьс и —3а2Ьс — противоположные одночлены. Чтобы получить один из другого, нужно перед другим поставить знак минус, или, что все равно, умножить его на число —1.

Например, одночлены а и —а, так же как —а и —( — а) — противоположные одночлены.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, «78», 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.