ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005

Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005

Страница № 172.

Учебник: Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин]. — 5-е изд. — М.: Просвещение, 2005. — 285 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, «172», 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Деление с остатком. Далее будем рассматривать лишь многочлены относительно х, т. е. многочлены вида

апхп + ап_1хп~' + ---+а1х+а(),

где а0, аь ... , ап_ь ап — данные числа, называемые коэффициентами многочлена, коэффициент ап называют коэффициентом при старшем члене, а коэффициент а0 — свободным членом. Если апФ0, то степенью многочлена называют степень его старшего члена.

Например, коэффициенты многочлена 5х3 + 4х2 — 2х-\-7 равны 5, 4, —2 и 7, коэффициент при старшем члене равен 5, свободный член равен 7, степень многочлена равна 3. Если все коэффициенты многочлена равны нулю, то этот многочлен есть нулевой многочлен (его степень не определяется).

Пусть даны два многочлена

А = апхп -\-ап_ххп 1 + ... -\-ахх-\-а0,

В = bmxm bnl_ Ххт 1 -\-... -\- Ьхх -f- Ь0

относительно х, причем В — ненулевой многочлен степени т, т. е. ЬтФ0. Разделить многочлен А на многочлен В с остатком — значит найти многочлены Q и /?, такие, что выполняется равенство A = Q-B-\-R} причем либо степень многочлена R меньше степени многочлена В, либо R — нулевой многочлен. Многочлен Q называют частным (неполным частным), многочлен R — остатком. Если R есть нулевой многочлен, то многочлен А делится на ненулевой многочлен В нацело.

Заметим, что многочлен нулевой степени есть число, не зависящее от х. Любое число, отличное от нуля, можно рассматривать как делитель любого многочлена. Например, число у есть делитель многочлена х2 + 2х + 3, потому что х2-)-2х-)-3 = =|(7х2+14х + 21).

Деление с остатком многочлена А на ненулевой многочлен В обычно выполняют уголком.

Пример 1. Разделим многочлен х3 — 8 на х — 3:

х3 + Ох2 + Ох — 81 х — 3_

3 — Зх2    х2 + Зх + 9

Зх2 + Ох Зх2 —9х _ 9х— 8 9х —27 19

Итак, х3 — 8 = (х2-f- Зх-f- 9) (х — 3)-f-19. При делении многочлена х3 —8 на двучлен х — 3 получено неполное частное х2 + Зх + 9 и остаток 19.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, «172», 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.