ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001

Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001

Страница № 160.

Учебник: Алгебра и начала анализа. 10-11 кл.: Учеб. для общеобразоват. учреждений. — 2-е изд. — М.: Мнемозина, 2001. — 335 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, «160», 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Дальнейший план изложения материала в этом пункте будет таким. Сначала мы выведем первые два правила дифференцирования — это сравнительно нетрудно. Затем рассмотрим ряд примеров на использование правил и формул дифференцирования, чтобы вы к ним привыкли. В самом конце пункта мы приведем доказательство третьего правила дифференцирования — для тех, кому это интересно.

Выведем правило дифференцирования функции у = f(x) + g(x).

Воспользуемся алгоритмом отыскания производной.

1)    Положим, ради удобства, f(x) + g(x) = h{x). Для фиксированного значения х имеем: h(x) = f(x) + g(x).

2)    В точке л; + Ах имеем: h(x+Ax) = f(x+Ax) + g(x+Ax).

3)Ay    = h(x+Ax)-h(x) =(f(x+Ах) + g(x+Ax))-((f(x) + g(x)) = =(/(x+Ax)-/(x))-t-(g<x+Ax)-g<x)) = Д/ +Д^.

Итак, Ay = Af + Ag.

^Ay_Af + Ag_Af | Ag Ax Ax Ax Ax

5) lim — = lim f — + — Лх_>0Дл: л*-»01 Ax Ax

= lim — + lim — = f'{x) + g'(x).

Лх->0 Ax Лх~>0 Ax

Итак,

(/(x) + g( x))' = f\x) + g\x).    •

Выведем правило дифференцирования функции y = k f(x). Воспользуемся алгоритмом отыскания производной.

1)    Положим, ради удобства, kf(x) = h(x). Для фиксированного значения х имеем: h{x) = k f{x).

2)    В точке лг+Дл; имеем: h(x+Ax) = kf(x+Ax).

3)    Ay = h(x+Ax)-h(x) - kf(x+Ax)-kf(x) =

= k(f(x+Дх) -f(x)) = kAf.

Итак,    Ay = kAf.

4}Ay = W=kAl Ax Ax Ax

5) lim — = lim k— = klim — = k f'{x).

Ax—>0 Ду Ax—>0 Д у Ax—>0 Д у

Получим (k f(x))' = kf'(x).    ®

Пример 3. Найти производную функции у=3х2 -4х + 2.

Решение. Имеем: у'=(3x2-4x + 2)'=(3x2)'+(-4x + 2),=3(x2)4(-4)=3-2x-4=6x-4.

Мы воспользовались первым и вторым правилами, а также формулами дифференцирования линейной функции у = -4х + 2 и функции у = х2. Ответ: у'=6х-4.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, «160», 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.