ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001

Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001

Страница № 260.

Учебник: Алгебра и начала анализа. 10-11 кл.: Учеб. для общеобразоват. учреждений. — 2-е изд. — М.: Мнемозина, 2001. — 335 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, «260», 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Если 0 <а < 1, то неравенство а1 > 1 имеет место тогда и только тогда, когда t <0 (см. теорему 4 из § 45). Значит, f(x)-g(x) <0, т.е. f(x) < g(x).

Тем самым доказано следующее утверждение.

Теорема. Показательное неравенство а,(х) >agix) равносильно неравенству того же смысла f(x) > g(x), если а > 1;

показательное неравенство af(x) >ag(x) равносильно неравенству противоположного смысла f(x) < g(x), если О < а < 1.

Пример 1. Решить неравенства:

а) г2*'4 >64; б)

ч2х-3,5

<-^=; в) 0,5li iu<0,53*-8.

Решение, а) Имеем 221 4 > 26. Это неравенство равносильно неравенству того же смысла 2х - 4 > 6, откуда находим х>5.

1 flV

б) Воспользовавшись тем, что -^= = 1—1 , перепишем заданное неравенство в виде:

П2*'3,5 ПУ*'5

- I «с - I . Здесь основанием служит

V

/

\

/

/

/

Л

У

/

/<

2

1

J

X

\

/

ч

>

Рис. 211

число - < 1. Значит, рассматриваемое неравен-3

ство равносильно неравенству противоположного смысла: 2х -3,5 >0,5, откуда находим: х>2.

в) Заданное неравенство равносильно неравенству противоположного смысла: X2 -Ззс>Ззс-8, т.е. х2 -6зс + 8>0.

Найдем корни квадратного трехчлена зс2 - 6х + 8: = 2, х2 =4. Построив (схематически) параболу у = х2 -6х + 8 (рис. 211), находим: х<2, х>4.    <Ц

Л „    4-3х -10 ,

Пример 2. Решить неравенство: ——-< 1.

3 — 1

Решение. Заметим, что 3*+1 = 3 ■ 3х, и введем новую переменную у = 3х.

„    4у-10 ,

Получим: —-< 1.

Зу-1

S

+

<

+

У

. я ^

** .

. *

9

Далее последовательно получаем: У-9

^———— — 1 < 0; JL± <0;

Зу-1    Зу-1

Применив

ч*-Г

<0.

Рис. 212

метод интервалов

(рис. 212), находим: - <у <9.

3

Возвращаясь к переменной х, получаем двойное неравенство

i<3x<9, т.е. 31<3Х<32, откуда находим -1 < х < 2.

3


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, «260», 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.