ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 8 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2006

Алгебра, 8 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2006

Страница № 057.

Учебник: Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин]. — 3-е изд. — М.: Просвещение, АО «Московские учебники», 2006. — 287 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, «57», 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Получился пример бесконечного множества, имеющего одинаковую мощность со своей частью.

Вот еще пример. Множество всех натуральных чисел и множество всех целых неотрицательных чисел имеют одинаковую мощность. Взаимную однозначность между элементами этих множеств можно осуществить так:

1,

2,

з,

4,

5,

н

н

Н

U

Н

о,

1,

2,

з,

4,

Уравнение а-\-х=Ь, где а и Ь — натуральные числа, не всегда разрешимо, т. е. не всегда имеет решение в множестве натуральных чисел, но всегда имеет решение в множестве целых чисел.

Уравнение а-\-х=Ь, где а и Ь — обыкновенные дроби, не всегда разрешимо в множестве обыкновенных дробей, но всегда имеет решение в множестве рациональных чисел.

Уравнение ах = Ьу где а и Ь — целые числа и афО, не всегда разрешимо в множестве целых чисел, но всегда разрешимо в множестве рациональных чисел.

Если данная арифметическая операция (сложение, вычитание, умножение, деление) применима к двум числам из данного множества и в результате дает число из этого же множества, то говорят, что множество замкнуто относительно этой операции. В противном случае говорят, что оно незамкнуто относительно этой операции.

Например, множество натуральных чисел замкнуто относительно сложения и умножения, незамкнуто относительно вычитания и деления; множество целых чисел замкнуто относительно сложения, вычитания и умножения, незамкнуто относительно деления; множество рациональных чисел замкнуто относительно всех арифметических операций (деление на нуль запрещено).

Принцип Дирихле. Пусть А — конечное множество из п натуральных чисел, каждое из которых не превышает число и k<n. Тогда в А есть равные числа. Ведь если бы все числа множества А были различны, то среди них обязательно было бы число, большее k, но по условию этого нет.

Принцип Дирихле был применен ранее при доказательстве периодичности десятичного разложения рационального числа.

Прямым произведением ЛХВ множеств Л и В называют множество всех пар (х\ у), где х£А, у£В.

Например, координатную плоскость /?2 можно рассматривать как прямое произведение RXR' двух действительных осей R и /?', где *£/?, y£R'.

Если конечные множества А и В имеют тип элементов соответственно, то их прямое произведение содержит т»п элементов, так как с каждым из элементов множества А можно образовать п пар с элементами множества В.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, «57», 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.