ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 8 класс (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.) 2010

Алгебра, 8 класс (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.) 2010

Страница № 228.

Учебник: Алгебра. 8 класс: учеб. для общеобразоват. учреждений / [Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.] — 17-е изд. — М.: Просвещение, 2010. — 255 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, «228», 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

При этом говорят, что х равно а с точностью до Л. Например, запись к = 3,14 ± 0,01 означает, что | л - 3,141 < 0,01, т. е. число п равно 3,14 с точностью до 0,01.

Стандартный вид числа — это запись его в виде а -10", где

1 <а < 10, п — целое число. Например,

348 = 3,48 Ю2, 0,027 = 2,7 10*2.

При округлении числа с недостатком с точностью до 10~" сохраняются п первых знаков после запятой, а последующие отбрасываются.

Например, при округлении числа 17,2397 с недостатком до тысячных, т. е. до 10 3, получаем 17,239, до сотых — 17,23, до десятых — 17,2.

При округлении числа с избытком с точностью до 10л-й знак после запятой увеличивается на единицу, а все последующие отбрасываются.

Например, при округлении числа 2,5143 с избытком до тысячных получаем 2,515, до сотых — 2,52, до десятых — 2,6.

Погрешность округления в обоих случаях не превосходит 10 ".

Округление с наименьшей погрешностью: если первая отбрасываемая цифра данного числа меньше 5, то округляют с недостатком, а если эта цифра больше или равна 5, то округляют с избытком. Например, при округлении числа 8,351 до сотых получаем 8,35, а при округлении до десятых — 8,4.

Запись х ~ а означает, что число а является приближенным значением числа х. Например, л/2 ~ 1,41.

Относительная погрешность — частное от деления абсолютной погрешности на модуль приближенного значения. Если х — точное значение, а — приближенное, то относительная погрешность равна

1*-а|

И '

Относительную погрешность обычно выражают в процентах.

Например, если точное значение величины равно 1,95, а приближенное равно 2, то относительная погрешность приближения равна

|2 - 1,95 | 0,05 ппо_    0

-=-= 0,025, или 2,5%.

2 2

3. Квадратные корни

Квадратный корень из числа а — такое число, квадрат которого равен а.

Например, 6 — квадратный корень из числа 36; число -6 также квадратный корень из числа 36.

Извлечение квадратного корня — действие нахождения квадратного корня. Извлечь квадратный корень можно только из неотрицательного числа.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, «228», 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.