ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990

Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990

Страница № 123.

Учебник: Алгебра и начала анализа: Учеб. для 10—11 кл. сред, шк. / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова. — М.: Просвещение, 1990. — 320 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, «123», 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

+

————о

-7

+ — +

-о——о    О' ■ - >

/ £ 3

Рис. 90

х2— 1

Функция f(х) = —— ■■ непрерывна в каждой точке своей

X — DX “j— О

области определения (это дробно-рациональная функция) и обращается в нуль в точках —1 и 1. Область определения этой функции — вся числовая прямая, за исключением нулей знаменателя, т. е. точек 2 и 3. Эти точки и точки — 1 и 1 разбивают область определения f на 5 промежутков (рис. 90), в каждом из которых функция f непрерывна и не обращается в нуль. На рисунке отмечен знак f в каждом из соответствующих интервалов, который определяем, найдя знаки значений f во внутренних точках интервалов. Неравенство нестрогое, поэтому числа — 1 и 1 (нули функции /) являются решениями неравенства. Рассматривая рисунок, можно записать о т в е т: множество решений неравенства — объединение промежутков (—оо; —1], [1;2) и (3; оо).

Пример 2. Найдем один из корней уравнения л:3 + 2* —2 = 0 с точностью до 0,1.

Функция f (х)=х3-\-2х — 2 непрерывна, поэтому достаточно найти отрезок длиной 0,2, на концах которого f имеет значения разных знаков. Имеем f (1)=1 >0, /(0)==—2<0, поэтому корень уравнения существует и он принадлежит отрезку [0; 1]. / (0,6)= = 0,63 + 2-0,6 — 2= — 0,584 < 0 и f( 1)>0, значит, корень лежит на отрезке [0,6; 1]. Наконец, f (0,8)=0,112>0, а /(0,6)<0, получили, что корень на отрезке [0,6; 0,8]. Теперь мы можем его найти: *о~0,7 с точностью до 0,1. ф

3.    Пример функции, не являющейся непрерывной. Практически все функции, с которыми вы встречались до сих пор, непрерывны в любой точке своей области определения. Не следует, однако, считать, что это верно для любой функции.

Приведем пример. Рассмотрим функцию f (л:)=(л:}, где {*} — дробная часть числа х (график f (*) = {*} изображен на рисунке 91, а), и возьмем любую целочисленную точку оси абсцисс, например х = 2.

Основное свойство непрерывной в х0 функции (f (хо + Дл:)-*-~+f(xо) при Дх-МЗ) в данном случае не выполняется. Действительно, пусть Дл:->0. Если Длс;>0, то {хо + Дл:} близко к нулю. Если же ДхСО, то значения {лго + Д*} близки к 1. В то же время функция f(x) = {x} непрерывна во всех точках, отличных от точек лс=п, где п — целое число.

Это свойство функции f (х) = {х\ нетрудно понять, рассмотрев рисунок 91, а.

4.    Пример функции, непрерывной, но не дифференцируемой в данной точке. Примером такой функции является функция


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, «123», 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.