ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990

Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990

Страница № 159.

Учебник: Алгебра и начала анализа: Учеб. для 10—11 кл. сред, шк. / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова. — М.: Просвещение, 1990. — 320 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, «159», 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Как и в случае многих других разделов математики, неоценим вклад в развитие математического анализа, внесенный Л. Эйлером и К. Ф. Гауссом (1777—1855).

В кратком очерке невозможно рассказать о существе открытий, сделанных в XVIII в. и позднее. Но об одном направлении нельзя не упомянуть. Речь идет о разложении функций в степенные ряды, т. е. о представлении функций в виде многочленов с бесконечным числом слагаемых. С примером бесконечной суммы (числового ряда) вы знакомы: бесконечные периодические дроби представлялись в виде суммы бесконечного числа слагаемых. С числовыми и функциональными рядами работал не только Ньютон, но и его предшественники, и поэтому несколько несправедливо название формула Тэйлора (Б. Тэйлор (1685— 1731) —английский математик, опубликовавший ее в 1715 г.), принятое для следующего замечательного соотношения:

/ (*„+д*)=/ ы+Цf    (Дх)Ч... (М'+...

(здесь fn) (лго) — значение, полученное /г-кратным дифференцированием функции f в точке *о, а п\ — 1 *2•...•«). Зная формулы производных, например, для функций sin х и cos х, вы можете разложить их в ряд Тэйлора самостоятельно.

Оказалось, что в ряде случаев, отбрасывая бесконечное число слагаемых, можно получать формулы, дающие хорошие приближения функций многочленами.

2) Энтузиазм, вызванный появлением нового мощного метода, позволяющего решать широкий круг задач, способствовал бурному развитию анализа в XVIII в. Но к концу этого столетия проблемы, возникшие уже у создателей дифференциального и интегрального исчислений, проявились весьма остро.

Основная трудность состояла в том, что точные определения таких ключевых понятий, как предел, непрерывность, действительное число, отсутствовали (соответственно и рассуждения содержали логические пробелы, а иногда были даже ошибочны). Характерный пример — определение непрерывности. Эйлер, Лагранж и даже Фурье (а он работал уже в начале XIX в.) называли непрерывной функцию, которая в своей области определения задана одним аналитическим выражением.

Тем самым «новая» математика не отвечала стандартам строгости, привычным для ученых, воспитанных на классических образцах греческих математиков. Интуиция, столь необходимая математикам, существенно опередила логику, тоже являющуюся неотъемлемой характеристикой математической науки. Гениальная интуиция таких гигантов, как Ньютон, Лейбниц, Эйлер, помогала им избегать ошибок. Но необходимы были прочные логические основы.

Характерны два высказывания, относящиеся к XVIII столетию. Известный математик М. Р о л л ь писал, что новое исчисле-


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, «159», 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.