ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкии) 2006

Алгебра, 9 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкии) 2006

Страница № 139.

Учебник: Алгебра: учеб. для 9 кл. общеобразоват. учренеденнй / [С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкии]. — 3-е изд. — М.: Просвещение, АО «Московские учебники», 2006.— 255 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, «139», 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Действительно, так как а, — а, + (1 — \)d, то при п = 1 равенство (8) выполняется.

Предположим, что равенство (8) выполняется при некотором п = к, т. е. что ак * а, 4- [к — 1 )d. Тогда

ак +1 ак + d = а} + (к — l)d + d = а, 4- kd,

т. е. равенство (8) выполняется для п * k 4- 1. Следовательно, равенство (8) верно прн любом натуральном п.

Пример 6. Докажем, что сумма п первых членов геометрической прогрессии (<75* 1) вычисляется по формуле

5- - aJT^r- ■

Действительно, так как 5. =:a^q , ^ = а., то прн п = 1 равенст-

<7-1

во (9) выполняется.

Предположим, что равенство (9) выполняется при некотором

п — k, т. е. что 5. = ~ ^ . Тогда q-1

«.♦. - s, + e. + 1 -    + aj -

_ olg*-a1 + arf** 1{дк _ a{qk + x - aL _ а{к + 1 - 1) q-1    q~ 1    <7-1

т. e. равенство (9) выполняется для n — k + 1. Следовательно, равенство (9) верно при любом натуральном п.

679°. а) В чем заключается принцип полной индукции?

б) Объясните, как доказывают утверждения методом математической индукции на примере доказательства равенства 1" — 1 для любого натурального п.

680.    Докажите методом математической индукции равенство: а) аЬл = (ab)n;    б) (ап)т = атп.

681.    Пусть а < 0. Докажите методом математической индукции, что:

а)    ап > 0 при четном натуральном п\

б)    ап < 0 при нечетном натуральном п.

682.    Докажите методом математической индукции, что:

а)    общий член геометрической прогрессии вычисляется по формуле а" = а, ■ qn~

б)    сумма п первых членов арифметической прогрессии вычисляется по формуле 5Я1 -п.

683*. Докажите методом математической индукции, что для любого натурального п выполняется равенство:

а)    1 + 2 + 3 + ... + п =    ;

б)    2 + 4 + 6 + ... + 2п = п(п + 1);

в)    1 + 3 + 5 + ... + (2п — 1) — /I j


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, «139», 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.