|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.
[ Все учебники ]
[ Букварь ]
[ Математика (1-6 класс) ]
« Алгебра »
[ Геометрия ]
[ Английский язык ]
[ Биология ]
[ Физика ]
[ Химия ]
[ Информатика ]
[ География ]
[ История средних веков ]
[ История Беларуси ]
[ Русский язык ]
[ Украинский язык ]
[ Белорусский язык ]
[ Русская литература ]
[ Белорусская литература ]
[ Украинская литература ]
[ Основы здоровья ]
[ Зарубежная литература ]
[ Природоведение ]
[ Человек, Общество, Государство ]
[ Другие учебники ]
7 класс -
8 класс -
9 класс -
10 класс -
11 класс
Алгебра, 9 класс (Н. Я. Виленкин, Г. С. Сурвилло, А. С. Симонов, А. И. Кудрявцев) 1996
Страница № 216.
Учебник: Алгебра для 9 класса: Учеб. пособие для учащихся шк. и классов, с углубл. изуч. математики / Н. Я. Виленкин, Г. С. Сурвилло, А. С. Симонов, А. И. Кудрявцев; Под ред. Н. Я. Виленкина. — М.: Просвещение, 1996. — 84 с.: ил.
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, «216», 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384
OCR-версия страницы из учебника (текст страницы, которая находится выше):
х2=|Л ,54--ЦЛ = i ,740...
2 з у 2 (1,5) /
Далее находим:
х3=-|А,740Н--*_\= 1,710...,
3 3 ^ 2(1,740)2/
x4=|(l,710H--=1,709...,
4 3 V 2 (1,710) /
х5=|У 1,7094--Л = 1,709... .
5 3 V .2 (1,709) /
Поскольку с точностью до 0,001 выполняется равенство х4 = х5,
то с указанной точностью имеем V5*« 1,709.
Задание только рекуррентного соотношения не может полностью определить последовательность. Например, из соотношения а„ = 2оя_, + а„_2 нельзя определить ах и а2, так как ах = 2а0-\-а_х и а2 — 2ах + о0» а о0 и в последовательность не входят. Значит, значения о, и а2 должны быть заданы отдельно. Такие значения называют начальными значениями последовательности, заданной рекуррентно. В примере 2 начальным значением является хх = 1,5. Количество начальных значений определяется видом рекуррентного соотношения. Если ап выражено через ап_х, ап_2, ..., о„_Л, то необходимо задать k начальных значений ах, о2, ..., ак. Например, зададим последовательность рекуррентным соотношением
on CLn—з Оп—2 + ап— 1.
Здесь надо знать три начальных значения аь а2, а3. Пусть о, = 2,
02 = 5, а3 = 4. Полагая в заданном соотношении п = 4, находим а4 = ах — о2 + о3 или о4 = 2 — 5+ 16= 13. Точно так же находим о5 и т. д.
Пример 3. Найдем первые шесть членов последовательности, каждый член которой, начиная с третьего, равен сумме двух предыдущих, т. е. ап+2 = ап+х-\-ап, если ее первыми двумя членами являются Oj = 0 и а2=1.
Решение. По условию имеем:
03 = 02 + 01 = 1, о4 = о3 + о2= 1 + 1 =2, а5 = а4 + а3 = 2+1=3, о6=
= о5 + а4 = 3 + 2 = 5.
Последовательность 0, 1, 1, 2, 3, 5, ..., задаваемую рекуррентным соотношением
^л + 2 = ^л+1 “I- Оя,
называют последовательностью ФибоначчиХ). Можно доказать,
** Фибоначчи (Fibonacci — сокращенное filius Bonacci, т. е. сын Боначчи) — прозвище итальянского математика Леонардо из г. Пизы (Леонардо Пизанского) (1180—1240). Последовательность Фибоначчи рассмотрена им в 1202 г. в книге «Liber abacci».
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, «216», 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384
Учебник: Алгебра для 9 класса: Учеб. пособие для учащихся шк. и классов, с углубл. изуч. математики / Н. Я. Виленкин, Г. С. Сурвилло, А. С. Симонов, А. И. Кудрявцев; Под ред. Н. Я. Виленкина. — М.: Просвещение, 1996. — 84 с.: ил.
Все учебники по алгебре:
Учебники по алгебре за 7 класс
- Алгебра, 7 класс (Е. П. Кузнецова и др.) 2009
- Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009
- Алгебра, 7 класс. Часть 2. Задачник (А. Г. Мордкович, Н. П. Николаев) 2009
- Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович) 2009
- Алгебра, 7 класс. Часть 2. Задачник (А. Г. Мордкович) 2009
- Алгебра, 7 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2008
- Алгебра, 7 класс (К. С. Муравин, Г. К. Муравин, Г. В. Дорофеев) 2001
- Алгебра, 7 класс (Ю.Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009
- Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005
- Алгебра, 7 класс. Задачник (А.Г. Мордкович, Т.Н. Мишустина, Б.Е. Тульчинская) 2001
- Алгебра, 7 класс (А. Г. Мордкович) 2001
- Алгебра, 7 класс (Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров и др.) 1991
- Алгебра, 7 класс (А.Г. Мерзляк, В.Б. Полонский, М.С. Якир) 2012
Учебники по алгебре за 8 класс
- Алгебра, 8 класс. Часть 1. Учебник (Мордкович А. Г.) 2010
- Алгебра, 8 класс. Часть 2. Задачник (Мордкович А.Г.) 2010
- Алгебра, 8 класс. Задачник (Л. И. Звавич, А. Р. Рязановский) 2008
- Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008
- Алгебра, 8 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2010
- Алгебра, 8 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2006
- Алгебра, 8 класс. Часть 2. Задачник (А. Г. Мордкович, Т. Н. Мишустина, Е. Е. Тульчинская) 2003
- Алгебра, 8 класс. Учебник (Мордкович А. Г.) 2001
- Алгебра, 8 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 1996
- Алгебра, 8 класс (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.) 2010
- Алгебра. Тесты для промежуточной аттестации. 7 — 8 класс. (Ф. Ф. Лысенко) 2009
- Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001
Учебники по алгебре за 9 класс
- Алгебра, 9 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2010
- Алгебра, 9 класс. Часть 2 из 2. Задачник (А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.) 2010
- Алгебра, 9 класс. Задачник (Л. И. Звавич, А. Р. Рязановский, П. В. Семенов) 2008
- Алгебра, 9 класс (А. Г. Мордкович, Н. П. Николаев) 2008
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2008
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2000
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009
- Алгебра, 9 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкии) 2006
- Алгебра, 9 класс. Задачник (А. Г. Мордкович, Т. Н. Мишустина, Е. Е. Тульчинская) 2002
- Алгебра, 9 класс (Мордкович А.Г.) 2002
- Алгебра, 9 класс (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.) 1995
- Алгебра, 9 класс (Н. Я. Виленкин, Г. С. Сурвилло, А. С. Симонов, А. И. Кудрявцев) 1996
- Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001
- Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2008
- Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2010
- Алгебра, 9 класс (Виленкин Н.Я., Сурвилло Г.С. и др.) 2006
- Сборник заданий для экзамена по алгебре, 9 класс (Л. В. Кузнецова, Е. А. Бунимович, Б. П. Пигарев, С. Б. Суворова) 2008
Учебники по алгебре за 10 класс
- Алгебра и начала математического анализа, 10 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2009
- Алгебра и начала математического анализа, 10 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и начала математического анализа, 10 класс (Ю. М. Колягин, Ю. В. Сидоров, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин) 2009
- Алгебра и начала математического анализа, 10 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2009
- Алгебра. Начала математического анализа, 10 класс (М. И. Шабунин, А. А. Прокофьев) 2007
- Алгебра и начала математического анализа, 10 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2009
- Математика, 10-й класс. Тесты для аттестации и контроля (Ф.Ф. Лысенко, С.Ю. Кулабухова) 2011
- Алгебра и начала анализа, 10 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2007
- Алгебра и начала анализа, 10-11 класс. Задачник (А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская) 2001
- Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001
- Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990
- Алгебра. Начала математического анализа, 10-11 класс (М. И. Шабунин, А. А. Прокофьев, Т. А. Олейник, Т. В. Соколова) 2009
- Дидактические материалы по алгебре и математическому анализу с ответами и решениями, 10—11 класс (В. И. Рыжик, Т. X. Черкасова) 2008
- Алгебра и начала математического анализа, 10—11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович) 2009
- Алгебра и начала математического анализа, 10—11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и начала анализа, 10 класс (А.Г. Мерзляк, Д.А. Номировский, В.Б. Полонский, М.С. Якир) 2012
Учебники по алгебре за 11 класс
- Алгебра и начала анализа, 10-11 класс. Задачник (А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская) 2001
- Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001
- Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990
- Алгебра. Начала математического анализа, 10-11 класс (М. И. Шабунин, А. А. Прокофьев, Т. А. Олейник, Т. В. Соколова) 2009
- Дидактические материалы по алгебре и математическому анализу с ответами и решениями, 10—11 класс (В. И. Рыжик, Т. X. Черкасова) 2008
- Алгебра и начала математического анализа, 10—11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович) 2009
- Алгебра и начала математического анализа, 10—11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и математический анализ для 11 класса (Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд) 1998
- Алгебра и начала математического анализа, 11 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2010
- Алгебра. Начала математического анализа, 11 класс (М. И. Шабунин, А. А. Прокофьев) 2008
- Алгебра и начала математического анализа, 11 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2009
- Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007
- Алгебра и начала математического анализа, 11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
|
|