ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] [ Алгебра ] « Геометрия » [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Геометрия, 7—9 класс (А. В. Погорелов) 2001

Геометрия, 7—9 класс (А. В. Погорелов) 2001

Страница № 034.

Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, «34», 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

прямые, поэтому CD — высота треугольника. Теорема доказана.

Задача (28).

Докажите, что биссектриса равнобедренного треугольника, проведенная из вершины, противолежащей основанию, является медианой и высотой.

Решение.

Пусть ABC — равнобедренный треугольник с основанием АВ и CD — его биссектриса (рис. 54). Треугольники ACD и BCD равны по первому признаку. У них сторона CD общая, стороны АС и ВС равны как боковые стороны равнобедренного треугольника, а углы при вершине С равны, потому что CD — биссектриса. Из равенства треугольников следует равенство их сторон AD и BD.

Значит, CD — медиана треугольника ABC. А по свойству медианы равнобедренного треугольника она является и высотой.

27. Третий признак равенства треугольников

Теорема (признак равенства треугольников по трем сторонам)

Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.

Доказательство.

Пусть ABC и А1В1С1 — два треугольника, у которых АВ=А1В1, АС=А1С1, ВС = В1С1 (рис. 55).

Требуется доказать, что треугольники равны.

Допустим, треугольники не равны. Тогда у них ZA s* ZAX, /-В ABV Z.C ^ /LCV Иначе они были бы равны по первому признаку.

Пусть А1В1С2 — треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одцой полуплоскости с вершиной Сг относительно прямой А1В1 (см. рис. 55).

Пусть D — середина отрезка СгС2. Треугольники А1С1С2 и В1С1С2 равнобедренные с общим основанием СХС2. Поэтому их медианы AXD и BXD являются высотами. Значит, прямые AXD и BXD пер-

С

D

Рис. 54


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, «34», 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224



Все учебники по геометрии:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.