|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 7—9 класс (А. В. Погорелов) 2001Страница № 101.Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, «101», 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224
OCR-версия страницы из учебника (текст страницы, которая находится выше):Рис. 172 Точки оси х (оси абсцисс) имеют равные нулю ординаты (у = 0), а точки оси у (оси ординат) имеют равные нулю абсциссы (х = 0). У начала координат абсцисса и ордината равны нулю. Плоскость, на которой введены описанным выше способом координаты х и у, будем называть плоскостью ху. Произвольную точку на этой плоскости с координатами х и у будем иногда обозначать просто (х, у). Введенные на плоскости координаты х и у называются декартовыми по имени Р. Декарта, который впервые применил их в своих исследованиях. Задача (9). Даны точки А (-3; 2) и В (4; 1). Докажите, что отрезок АВ пересекает ось ординат, но не пересекает ось абсцисс. Решение. Ось у разбивает плоскость ху на две полуплоскости. В одной полуплоскости абсциссы точек положительны, а в другой — отрицательны. Так как у точек А и В абсциссы противоположных знаков, то точки А и В лежат в разных полуплоскостях. А это значит, что отрезок АВ пересекает ось у. Ось х также разбивает плоскость ху на две полуплоскости. В одной полуплоскости ординаты точек положительны, а в другой — отрицательны. У точек А и В ординаты одного знака (положительны). Значит, точки А и В лежат в одной полуплоскости. А следовательно, отрезок АВ не пересекается с осью х. 72. Координаты середины отрезка Пусть А (хх; z/x) и В (х2; у2) — две произвольные точки и С (х; у) — середина отрезка АВ. Найдем координаты х, у точки С. Рассмотрим сначала случай, когда отрезок АВ не параллелен оси у, т. е. хх ^ х2. Проведем через точки А, В, С прямые, параллельные оси у (рис. 173). Они пересекут ось х в точках Ах (х; 0), В1 (х2; 0), С1 (х; 0). По теореме Фалеса точка Сх будет серединой отрезка А1В1. Так как точка С1 — середина отрезка AXBV то А1С1 = ВгС19 а значит, \х - хг\ = \х - х2\. Отсюда следует, что либо х - х1 = х - х2, либо х - х1 = = - (х - х2). Первое равенство невозможно, так как рИс. 173
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, «101», 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224
Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.