ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] [ Алгебра ] « Геометрия » [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Геометрия, 7—9 класс (А. В. Погорелов) 2001

Геометрия, 7—9 класс (А. В. Погорелов) 2001

Страница № 174.

Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, «174», 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

(рис. 282). Затем аналогично строим остальные вершины А3, А4, А5, А6 и соединяем их отрезками.

Для построения правильного вписанного треугольника достаточно соединить через одну вершины правильного вписанного шестиугольника (рис. 283).

Для построения правильного вписанного четырехугольника (квадрата) достаточно провести через центр окружности перпендикулярные прямые. Они пересекут окружность в вершинах квадрата (рис. 284).

Для построения правильного описанного многоугольника достаточно провести касательные к окружности в вершинах правильного вписанного многоугольника. Касательные, проходящие через вершины правильного вписанного многоугольника, пересекаются в вершинах правильного описанного многоугольника (рис. 285).

Если в окружность вписан правильный л-угольник, то легко построить правильный вписанный 2л-угольник. На рисунке 286 показано построение правильного восьмиугольника.

118. Подобие правильных выпуклых многоугольников Теорема

Рис. 284

Правильные выпуклые /t-угольники подобны. В частности, если у них стороны одинаковы, то они равны.

Доказательство.

Докажем сначала второе утверждение теоремы. Итак, пусть Рг: АгА2 ... Ап, Р2: ВгВ2 ... Вп — правильные выпуклые n-угольники с одинаковыми сторонами (рис. 287). Докажем, что они равны, т. е. совмещаются движением.

Треугольники А1А2А3 и В1В2В3 равны по первому признаку. У них АгА2 = ВгВ2, А<^А3 = В2В3 и /LA1A2A3 = /-В]В2В3.

Подвергнем многоугольник Рг движению, при котором его вершины Ах, А2, А3 переходят в вершины Bv В2, В3 соответственно. Как мы знаем, такое движение существует. При этом вершина А4


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, «174», 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224



Все учебники по геометрии:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.