|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 7—9 класс (А. В. Погорелов) 2001Страница № 201.Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, «201», 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224
OCR-версия страницы из учебника (текст страницы, которая находится выше):(рис. 326). Если же основания призмы — прямоугольники, то она называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани — прямоугольники. Длины ребер прямоугольного параллелепипеда, сходящиеся в одной вершине, называются линейными размерами параллелепипеда. Прямоугольный параллелепипед, у которого все линейные размеры равны, называется кубом. Таким образом, у куба все ребра равны, а грани — квадраты. Пирамида. Дадим определение пирамиды. Пусть Р— а плоский многоугольник в плоскости а и S — точка, не лежащая в плоскости а. Соединим произвольную рИс. 327 точку X многоугольника Р с точкой S. Геометрическое тело, составленное из точек всех отрезков XS, называется пирамидой (рис. 327). Поверхность этого тела состоит из многоугольника Р — основания пирамиды — и боковых граней, представляющих собой треугольники с общей вершиной S — вершиной пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами. Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания, а также длина этого перпендикуляра. Пирамида называется правильной, если ее основание есть правильный многоугольник, а основанием высоты пирамиды является центр этого многоугольника. Треугольная рис. 328 пирамида называется тетраэдром (рис. 328). Но часто называют тетраэдром треугольную пирамиду, у которой все ребра равны (правильный тетраэдр). Сечениями пирамиды плоскостями, параллельными основанию, являются многоугольники, подобные основаниям пирамиды. Сечения пирамиды плоскостями, проходящими через вершины пирамиды, являются треугольниками. Плоскость, параллельная основанию пирамиды, рассекает пирамиду на части (рис. 329). Та из них, которая содержит вершину пирамиды, представляет собой пирамиду, подобную исходной. Другая часть называется усеченной пирамидой. Поверхность усеченной пирамиды состоит из оснований — подобных многоугольников в параллельных плоскостях — и боковой поверхности, составленной из трапеций. Усеченная пирамида, которая получается из правильной, также называется правильной. Высотой Рис. 329 А Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, «201», 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224
Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.