|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.
[ Все учебники ]
[ Букварь ]
[ Математика (1-6 класс) ]
[ Алгебра ]
« Геометрия »
[ Английский язык ]
[ Биология ]
[ Физика ]
[ Химия ]
[ Информатика ]
[ География ]
[ История средних веков ]
[ История Беларуси ]
[ Русский язык ]
[ Украинский язык ]
[ Белорусский язык ]
[ Русская литература ]
[ Белорусская литература ]
[ Украинская литература ]
[ Основы здоровья ]
[ Зарубежная литература ]
[ Природоведение ]
[ Человек, Общество, Государство ]
[ Другие учебники ]
7 класс -
8 класс -
9 класс -
10 класс -
11 класс
Геометрия, 7—9 класс (А. В. Погорелов) 2001
Страница № 119.
Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил.
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, «119», 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224
OCR-версия страницы из учебника (текст страницы, которая находится выше):
я
Рис. 194 Рис. 195
Если преобразование симметрии относительно прямой g переводит фигуру F в себя, то эта фигура называется симметричной относительно прямой g, а прямая g называется осью симметрии фигуры.
Например, прямые, проходящие через точку пересечения диагоналей прямоугольника параллельно его сторонам, являются осями симметрии прямоугольника (рис. 193). Прямые, на которых лежат диагонали ромба, являются его осями симметрии (рис. 194).
Теорема _
Преобразование симметрии относительно прямой
является движением.
Доказательство.
Примем данную прямую за ось у декартовой системы координат (рис. 195). Пусть произвольная точка А (х; у) фигуры F переходит в точку А' (х'; у') фигуры F'. Из определения симметрии относительно прямой следует, что у точек А и А' равные ординаты, а абсциссы отличаются только знаком: х' = -х.
Возьмем две произвольные точки А (хг; ух) и В (х2; у2). Они перейдут в точки А (—лгх; ух) и И (~х2; у2).
Имеем:
АВ2 = (х2 - хг)2 + (у2 - уг)2,
АВ'2 = (~х2 + Xjf + (у2 - уг)2.
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, «119», 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224
Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил.
Все учебники по геометрии:
Учебники по геометрии за 7 класс
- Геометрия, 7 класс (В. В. Шлыков) 2011
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010
- Геометрия, 7—9 класс (Шарыгин И. Ф.) 1997
- Геометрия, 7—9 класс (А. В. Погорелов) 2001
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
Учебники по геометрии за 8 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010
- Геометрия, 7—9 класс (Шарыгин И. Ф.) 1997
- Геометрия, 7—9 класс (А. В. Погорелов) 2001
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
- Геометрия, 8 класс (Г.П. Бевз, В.Г. Бевз, н.Г. Владимирова) 2008
Учебники по геометрии за 9 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010
- Геометрия, 7—9 класс (Шарыгин И. Ф.) 1997
- Геометрия, 7—9 класс (А. В. Погорелов) 2001
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
Учебники по геометрии за 10 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
- Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008
- Геометрия, 10 класс (Е. В. Потоскуев, Л. И. Звавич) 2008
- Геометрия, 10 класс. Задачник (Е. В. Потоскуев, Л. И. Звавич) 2004
- Геометрия, 10 класс (А. Д. Александров, А. Л. Вернер, В. И. Рыжик) 1999
- Геометрия, 10—11 классы (Калинин Л. Ю., Терёшин Д. А.) 2011
- Геометрия, 10—11 класс (Шарыгин И. Ф.) 1999
- Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009
Учебники по геометрии за 11 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
- Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008
- Геометрия, 10—11 классы (Калинин Л. Ю., Терёшин Д. А.) 2011
- Геометрия, 10—11 класс (Шарыгин И. Ф.) 1999
- Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009
- Геометрия, 11 класс. Задачник (Е. В. Потоскуев, Л. И. Звавич) 2004
|
|