|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.
[ Все учебники ]
[ Букварь ]
[ Математика (1-6 класс) ]
[ Алгебра ]
« Геометрия »
[ Английский язык ]
[ Биология ]
[ Физика ]
[ Химия ]
[ Информатика ]
[ География ]
[ История средних веков ]
[ История Беларуси ]
[ Русский язык ]
[ Украинский язык ]
[ Белорусский язык ]
[ Русская литература ]
[ Белорусская литература ]
[ Украинская литература ]
[ Основы здоровья ]
[ Зарубежная литература ]
[ Природоведение ]
[ Человек, Общество, Государство ]
[ Другие учебники ]
7 класс -
8 класс -
9 класс -
10 класс -
11 класс
Геометрия, 7—9 класс (А. В. Погорелов) 2001
Страница № 073.
Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил.
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, «73», 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224
OCR-версия страницы из учебника (текст страницы, которая находится выше):
Решение.
Так как прямоугольник есть параллелограмм, а параллелограмм с перпендикулярными диагоналями есть ромб (задача 33), то у рассматриваемого прямоугольника все стороны равны (рис. 130). По определению такой прямоугольник есть квадрат.
57. Теорема Фалеса Теорема (Фалеса)
Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.
Доказательство.
Пусть Av А2, А3 — точки пересечения параллельных прямых с одной из сторон угла и А2 лежит между А1 и А3 (рис. 131). Пусть В19 В2, В3 — соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если АХА2 = = А2А3, то В^В2 — В2В3.
Проведем через точку В2 прямую EF, параллельную прямой АХА3. По свойству параллелограмма АгА2 = FB2, = В2Е. И так как АгА2 = = АзАд, то FB2 = В2Е.
Треугольники B2BXF и В2В3Е равны по второму признаку. У них B2F = В2Е по доказанному. Углы при вершине В2 равны как вертикальные, а углы B2FBl и В2ЕВ3 равны как внутренние накрест лежащие при параллельных А1В1 и А3В3 и секущей EF.
Из равенства треугольников следует равенство сторон: В1В2 = В2В3. Теорема доказана.
Замечание.
В условии теоремы Фалеса вместо сторон угла можно взять любые две прямые, при этом заключение теоремы будет то же:
параллельные прямые, пересекающие две данные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой.
Фалес Милетский
древнегреческий
ученый
(VI в. до н. э.).
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, «73», 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224
Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил.
Все учебники по геометрии:
Учебники по геометрии за 7 класс
- Геометрия, 7 класс (В. В. Шлыков) 2011
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010
- Геометрия, 7—9 класс (Шарыгин И. Ф.) 1997
- Геометрия, 7—9 класс (А. В. Погорелов) 2001
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
Учебники по геометрии за 8 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010
- Геометрия, 7—9 класс (Шарыгин И. Ф.) 1997
- Геометрия, 7—9 класс (А. В. Погорелов) 2001
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
- Геометрия, 8 класс (Г.П. Бевз, В.Г. Бевз, н.Г. Владимирова) 2008
Учебники по геометрии за 9 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—9 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2010
- Геометрия, 7—9 класс (Шарыгин И. Ф.) 1997
- Геометрия, 7—9 класс (А. В. Погорелов) 2001
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
Учебники по геометрии за 10 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
- Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008
- Геометрия, 10 класс (Е. В. Потоскуев, Л. И. Звавич) 2008
- Геометрия, 10 класс. Задачник (Е. В. Потоскуев, Л. И. Звавич) 2004
- Геометрия, 10 класс (А. Д. Александров, А. Л. Вернер, В. И. Рыжик) 1999
- Геометрия, 10—11 классы (Калинин Л. Ю., Терёшин Д. А.) 2011
- Геометрия, 10—11 класс (Шарыгин И. Ф.) 1999
- Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009
Учебники по геометрии за 11 класс
- Задачи к урокам геометрии, 7-11 классы. (Зив Б.Г.) 1998
- Геометрия, 7—11 класс (Погорелов А. В.) 1995
- Геометрия, 10—11 класс (И. М. Смирнова, В. А. Смирнов) 2008
- Геометрия, 10—11 классы (Калинин Л. Ю., Терёшин Д. А.) 2011
- Геометрия, 10—11 класс (Шарыгин И. Ф.) 1999
- Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009
- Геометрия, 11 класс. Задачник (Е. В. Потоскуев, Л. И. Звавич) 2004
|
|