|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 7—9 класс (А. В. Погорелов) 2001Страница № 050.Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, «50», 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224
OCR-версия страницы из учебника (текст страницы, которая находится выше):опыта. Утверждения оставшихся без доказательств свойств стали аксиомами. Таким образом, аксиомы имеют опытное происхождение. Геометрия в ранний период своего развития достигла особенно высокого уровня в Египте. В I тыс. до н. э. геометрические сведения от египтян перешли к грекам. За период с VII по III в. до н. э. греческие геометры не только обогатили геометрию многочисленными новыми теоремами, но сделали также серьезные шаги к строгому ее обоснованию. Многовековая работа греческих геометров за этот период была подытожена Евклидом (330— 275 гг. до н.э.) в его знаменитом труде «Начала». Изложение геометрии в «Началах» Евклида построено на системе аксиом. Эта система аксиом отличается от системы аксиом, принятой в данном учебнике. Но в ней также есть аксиома параллельных. Аксиома параллельных в отличие от других аксиом не подкрепляется наглядными соображениями. Может быть, поэтому со времен Евклида математики многих стран пытались доказать ее как теорему. Но это никому не удавалось. Наконец, в XIX в. было доказано, что это невозможно сделать. Первым, кто обоснованно высказал это утверждение, был великий русский математик Николай Иванович Лобачевский. Н. И. Лобачевский — русский математик (1792—1856) Контрольные вопросы 1. Докажите, что две прямые, параллельные третьей, параллельны. 2. Объясните, какие углы называются внутренними односторонними. Какие углы называются внутренними накрест лежащими? 3. Докажите, что если внутренние накрест лежащие углы одной пары равны, то внутренние накрест лежащие углы другой пары тоже равны, а сумма внутренних односторонних углов каждой пары равна 180°. 4. Докажите признак параллельности прямых. 5. Объясните, какие углы называются соответственными. Докажите, что если внутренние накрест лежащие углы равны, то соответственные углы тоже равны, и наоборот. 6. Докажите, что через точку, не лежащую на данной прямой, можно провести параллельную ей прямую. Сколько прямых, параллельных данной, можно провести через точку, не лежащую на этой прямой? Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, «50», 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224
Учебник: Геометрия: Учеб. для 7—9 кл. общеобразоват. учреждений / А. В. Погорелов. — 2-е изд. — М.: Просвещение, 2001. — 224 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.