ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007

Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007

Страница № 013.

Учебник: Алгебра и начала анализа. 11 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. — М.: Мнемозина, 2007. — 287 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, «13», 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Квадратные трехчлены х2 + х + 1, х2 - х + 1 имеют отрицательные дискриминанты, а потому, как известно, из курса алгебры 8-го класса, не разлагаются на линейные множители с действительными коэффициентами.

Итак, х6 - 1 = (х - 1)(х2 + х + 1)(х + 1)(х2 - х + 1).    ■

Пр и мер 6. Разложить на множители многочлен 16л;7 -

- 72л;6 + 108л;5 - 54л;4.

Решение. 16л;7 - 72л;6 + 108л;5 - 54л;4 = 2л:4(8л;3 - 36л;2 + + 54л; - 27) = 2л;4((2л;)3 - 3 • (2л;)2 • 3 + 3 • (2л;) • З2 - З3) = = 2л;4(2л: - З)3.

В процессе решения мы использовали прием вынесения общего множителя за скобки и формулу «куб разности».    ■

4. Разложение квадратного трехчлена на линейные множители.

Если х1 и х2 — корни квадратного трехчлена ах2 + Ьх + с, то ах2 + Ьх + с = а(х - xj(x - х2).    (5)

Например, корнями квадратного трехчлена 2л;2 - 5л; - 7 являются числа -1 и 3,5, значит, 2л:2 - 5х - 7 = 2(х + 1)(л; - 3,5) = = (х + 1)(2х - 7).

Если, в частности, квадратный трехчлен имеет один корень (дискриминант квадратного трехчлена равен нулю), то для использования формулы (5) полагают х1 = х2 (кратный корень), и формула (5) принимает вид ах2 + Ьх + с = а(х - л^)2.

Если квадратный трехчлен не имеет действительных корней (дискриминант отрицателен), то квадратный трехчлен не разлагается на линейные множители с действительными коэффициентами.

Выше, в следствии из теоремы 3, был получен следующий результат: если число а является корнем многочлена р(х), то р(х) делится на двучлен х - а, т. е. может быть представлен в виде р(х) = (х - a)q(x). Это еще один прием разложения на множители многочлена от одной переменной. Отметим одну любопытную теорему, которая не раз позволит нам пользоваться указанным приемом разложения многочлена на множители.

Теорема 4. Пусть все коэффициенты многочлена р(х) — целые числа. Если целое число а является корнем многочлена р(х), то а — делитель свободного члена многочлена р(х).

Доказательство, простоты ради, проведем для случая, когда р(х) — многочлен третьей степени: р(х) = Ьх3 + сх2 + dx + т, где все коэффициенты Ь, с, d9 т — целые числа. По условию,


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, «13», 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.