ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007

Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007

Страница № 164.

Учебник: Алгебра и начала анализа. 11 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. — М.: Мнемозина, 2007. — 287 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, «164», 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Имеем: МС = 0,5ОС = 0,25АС = 0,25 aV2; SKCL= 2SKMC = 2 ■ 0,ЪМС2 = = МС2 = 0,252 • 2а2 = 0,125а2. Значит, вероятность выбора точки

из AKCL равна = 0,125.

По условию нам следует найти вероятность события, противоположного к попаданию точки в треугольник KCL. Получим

1 - 0,125 = 0,875.

Ответ: 0,875.

Сформулируем общее правило для нахождения геометрических вероятностей.

Если площадь S(A) фигуры А разделить на площадь S(X) фигуры X, которая целиком содержит фигуру А, то получится вероятность того, что случайно выбранная точка фигуры X окажется в фигуре А:

Обосновать это правило можно примерно следующим образом. Допустим, что фигура X состоит из N одинаковых квадратиков, которые могут иметь общие точки на границах, но не имеют общих точек внутри квадратиков. Допустим также, что некоторое количество N(A) этих квадратиков образует фигуру А. Заменим задачу о произвольном выборе точки фигуры X на задачу о произвольном выборе одного из N одинаковых квадратиков, составляющих эту фигуру. Предполагается, что ни один из квадратиков не имеет никаких преимуществ перед другими, т. е. что все исходы такого выбора равновозможны между собой. Тогда применим классическую вероятностную схему и получим вероят-N(A)

ность Р(А) = - попадания точки в фигуру А. Если S0 — площадь одного квадратика, то N • S0 = S(X) и N(A) • S0 = S(A). Значит,

ЯА) N(A) ■ Sp N(A)

S(X) = N -So = ~1T =

Для перехода к фигурам X и А произвольного вида требуется весьма тонкая математическая операция предельного перехода. Такие фигуры следует приближать фигурами, составленными из квадратиков, и уменьшать размеры квадратиков, устремляя эти размеры к нулю. Тогда коли-

N(A)

чества N и N(A) будут неограниченно возрастать, а их частное ^ все

S(A)

более точно будет приближаться к отношению    площадей фигур.

S(A)

В итоге такого предельного перехода как раз и получится, что Р(А) = ~S(Xj9


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, «164», 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.