ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007

Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007

Страница № 117.

Учебник: Алгебра и начала анализа. 11 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. — М.: Мнемозина, 2007. — 287 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, «117», 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Это значит, что п — целая часть числа lg a, a lg а0 — дробная часть числа lg а.

Обычно целую часть числа lga называют характеристикой десятичного логарифма числа а, а дробную часть числа lg а называют мантиссой десятичного логарифма числа а.

Математики, как вы знаете, ничего просто так не делают; если уж они выделили десятичные логарифмы, ввели термины «характеристика» и «мантисса», значит, с определенной целью. С какой? Для ответа на этот вопрос рассмотрим пример: вычислить lg 70, lg 700, lg 700 000, lg 0,007, если известно, что lg 7 « 0,8451.

Имеем:

lg 70 = lg (7 10) = lg 7 + lg 10 « 0,8451 + 1 = 1,8451; lg 700 = lg (7 102) = lg 7 + lg 102 * 0,8451 + 2 = 2,8451;

lg 700 000 = lg (7 105) = lg 7 + lg 105 * 0,8451 + 5 = 5,8451;

lg 0,007 = lg (7 10'3) = lg 7 + lg 10'3 - 0,8451 - 3 = -2,1549.

Таким образом, возвращаясь к решению примера 5, достаточно составить таблицу десятичных логарифмов чисел, заключенных в промежутке [1; 10), чтобы с ее помощью и с помощью стандартного вида положительного числа вычислять десятичные логарифмы любых положительных чисел.

Рассмотрим занимательный пример, где используются десятичные логарифмы.

Пр и м е р 6. Сколько цифр содержит число 7100?

Решение. Часто начинают решать эту задачу «в лоб»: возводят число 7 постепенно в первую, вторую, третью и т. д. степень и пытаются увидеть закономерность. Имеем:

71 = 7 (одна цифра), 72 = 49 (две цифры), 73 = 343 (три цифры), 74 = 2401 (четыре цифры), 75 = 16 807 (пять цифр), 76 = 117 649 (шесть цифр).

Возникает естественная гипотеза: каков показатель степени, столько цифр в результате. Но эта гипотеза рушится уже на следующем шаге: 77 = 823 543 — в этом числе не 7, а 6 цифр. Так что метод перебора и угадывания здесь не срабатывает.

Поступим по-другому: вычислим десятичный логарифм числа 7100. Получаем: lg 7100 = 100 lg 7 = 100 • 0,8451 = 84,51.

Видим, что характеристика логарифма равна 84. Значит, порядок числа 7100 равен 84, а потому в числе 7100 — 85 цифр.

Ответ: 85 цифр.

Логарифмических функций бесконечно много: у = log2 х; у = log3х; у = logo,3х; у = lgх; у = loggлит. д. Возникает вопрос,


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, «117», 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.