ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007

Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007

Страница № 070.

Учебник: Алгебра и начала анализа. 11 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. — М.: Мнемозина, 2007. — 287 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, «70», 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Им соответствуют на числовой окружности 10 точек: 0,23л, 0,46л, 0,69л, 0,92л, 1,15л, 1,38л, 1,61л, 1,84л, 2,07л, 2,3л (рис. 33). Из них во вторую четверть, т. е. в промежуток от 0,5л до л попали два числа 0,69л, 0,92л. Значит, во второй координатной четверти находятся только числа г3 и z4: ведь от умножения на 0,5Л изменятся лишь расстояния до начала координат.

б) Надо найти все числа zn, для которых \zn\ < 0,001. Но \zn\ = |z\n = 0,5”. Значит, речь идет о неравенстве 0,5” < 0,001. Оно выполняется только при п- 10 (для заданных десяти чисел). Итак, число z10 = 0,510(cos 2,3л + i sin 2,3л) лежит внутри круга радиуса 0,001 с центром в начале координат. Поскольку аргумент числа равен 2,3л - 2л = 0,3л, а это значение принадлежит первой четверти числовой окружности, получается, что число z10 расположено правее оси ординат, что и требуется в условии.

Ответ: a) z3, z4; б) г10.

То, что было сказано выше, известно вам из курса 10-го класса. Теперь перейдем непосредственно к теме этого параграфа, т. е. к извлечению корней п-й степени из комплексных чисел. Как и для действительных чисел, такая операция является обратной по отношению к возведению в п-ю степень. Основных отличий, как мы увидим, два. Во-первых, извлекать корни п-й степени можно из любых комплексных чисел. Во-вторых, за исключением случая z- 0, корней /i-й степени из заданного комплексного числа z всегда имеется ровно п.

Определение. Корнем л-й степени из комплексного числа z называют комплексное число, я-я степень которого равна z. Множество всех корней n-й степени из комплексного числа z обозначают yfz. Извлечь корень л-й степени из комплексного числа z — это значит найти множество yfz.

Заметим, что при z = 0 получим Vo = 0. Всюду далее будем считать, что z Ф 0.

При п = 2ип = 3 это определение совпадает с определениями соответственно квадратных и кубических корней из комплексных чисел («Алгебра и начала анализа-10», глава 6). Формула для нахождения <Гг, как мы увидим, является обобщением формул для Гг и yfz. Напомним, что

Ун

1

Г

-*10

Л,

S

1/

1

X

Л

t-

X:

t*

(- -

3?

А

Рыс. 33


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, «70», 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.