|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 10 класс. Задачник (Е. В. Потоскуев, Л. И. Звавич) 2004Страница № 064.Учебник: Геометрия. 10 кл.: Задачник для общеобразоват. учреждений с углубл. и профильным изучением математики / Е. В. Потоскуев, Л. И. Звавич. — 2-е изд., стереотип. — М.: Дрофа, 2004. — 256 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, «64», 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251
OCR-версия страницы из учебника (текст страницы, которая находится выше):Так как DE — высота ромба ABCD, то DE = ^ , где S — площадь этого ромба. Сторона ВС ромба является гипотенузой прямоугольного треугольника ВОС, катеты ОВ и ОС которого равны 6 и 8. Значит, ВС = JOB2 + ОС2 = Л2 + 82 = 10. Учитывая, что S = | •AC-BD = ^ •12•16 = 96, находим: п_ 96 п с ф , DM 3,2 1 , 1 DE = Iq = 9,6. Тогда tg ф = = 9^ = 3 > откУДа Ф = 3 ■ б) Так как отрезок DM — перпендикуляр к плоскости ромба ABCD, то AD _L DM, CD J_ DM, значит, Z ADC = \|/ — линейный угол двугранного угла, образованного пересекающимися плоскостями ADM и CDM. Найдем этот угол. В треугольнике ACD по теореме косинусов находим AD2 + CD2 - AC2 102 + 102 - 162 7 COS W = - = - = — . v 2AD-CD 2*10*10 25’ откуда - arccos I ■(-£} Ответ: a) arctg |; 6) arccos 4.049. Докажите, что биссектрисы всех линейных углов данного двугранного угла лежат в одной полуплоскости. 4.050. Через центр О правильного треугольника КМР со стороной, равной аЛ , проведен к его плоскости перпендикуляр ОН. Угол между прямой НМ и плоскостью треугольника КМР равен 45°. Найдите угол между плоскостями: а) НОМ и КОМ; б) КМР и НРК. 4.051. Через сторону АВ основания АВС правильной треугольной пирамиды РАВС проведена плоскость а, пересекающая ребро PC в точке К. Найдите площадь сечения АВК, если плоскость а перпендикулярна ребру PC и образует угол в 30° с плоскостью основания. Сторона основания пирамиды равна 8 см. 4.052. Полуплоскость, границей которой является ребро двугранного угла, делящая его на два равных двугранных угла, называется биссектором двугранного угла. Докажите, Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, «64», 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251
Учебник: Геометрия. 10 кл.: Задачник для общеобразоват. учреждений с углубл. и профильным изучением математики / Е. В. Потоскуев, Л. И. Звавич. — 2-е изд., стереотип. — М.: Дрофа, 2004. — 256 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.