|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009Страница № 031.Учебник: Геометрия. 10—11 классы: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 18-е изд. — М. : Просвещение, 2009. — 255 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, «31», 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256
OCR-версия страницы из учебника (текст страницы, которая находится выше):85 Изобразите параллелепипед ABCDA1B1C1Dl и постройте его сечение плоскостью BKL, где точка К — середина ребра ААХ, а точка L — середина ребра ССХ. Докажите, что построенное сечение — параллелограмм. 88 Изобразите параллелепипед ABCDAXBXCXDX и постройте его сечение плоскостью, проходящей через диагональ АС основания параллельно диагонали BDX. Докажите, что если основание параллелепипеда — ромб и углы АВВХ и СВВХ прямые, то построенное сечение — равнобедренный треугольник. 87 Изобразите параллелепипед ABCDAXBXCXDX и постройте его сечение плоскостью MNK, где точки М, N и К лежат соответственно на ребрах: а) ВВХ, AAU AD; б) ССХ, AD, ВВХ. Вопросы к главе I 1 Верно ли утверждение: если две прямые не имеют общих точек, то они параллельны? 2 Точка М не лежит на прямой а. Сколько прямых, не пересекающих прямую а, проходит через точку Ml Сколько из этих прямых параллельны прямой а? 3 Прямые а и с параллельны, а прямые а и b пересекаются. Могут ли прямые Ъ и с быть параллельными? 4 Прямая а параллельна плоскости а. Верно ли, что эта прямая: а) не пересекает ни одну прямую, лежащую в плоскости а; б) параллельна любой прямой, лежащей в плоскости а; в) параллельна некоторой прямой, лежащей в плоскости а? 5 Прямая а параллельна плоскости а. Сколько прямых, лежащих в плоскости а, параллельны прямой а? Параллельны ли друг другу эти прямые, лежащие в плоскости а? 6 Прямая а пересекает плоскость а. Лежит ли в плоскости а хоть одна прямая, параллельная а? 7 Одна из двух параллельных прямых параллельна некоторой плоскости. Верно ли утверждение, что и вторая прямая параллельна этой плоскости? 8 Верно ли утверждение: если две прямые параллельны некоторой плоскости, то они параллельны друг другу? 9 Две прямые параллельны некоторой плоскости. Могут ли эти прямые: а) пересекаться; б) быть скрещивающимися? 10 Могут ли скрещивающиеся прямые а и Ъ быть параллельными прямой с? 11 Боковые стороны трапеции параллельны плоскости а. Параллельны ли плоскость а и плоскость трапеции? 12 Две стороны параллелограмма параллельны плоскости а. Параллельны ли плоскость а и плоскость параллелограмма? 13 Могут ли быть равны два непараллельных отрезка, заключенные между параллельными плоскостями? 14 Существует ли тетраэдр, у которого пять углов граней прямые? IldpU.l.lC.tb/IOCt'lu \ u H/'ocKoc/mii Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, «31», 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256
Учебник: Геометрия. 10—11 классы: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 18-е изд. — М. : Просвещение, 2009. — 255 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.