ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] [ Алгебра ] « Геометрия » [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009

Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009

Страница № 154.

Учебник: Геометрия. 10—11 классы: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 18-е изд. — М. : Просвещение, 2009. — 255 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, «154», 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

614

615

616

617

618

619

620

621

622

623

624

625

626

Найдите угол между образующей и высотой, конуса, если разверткой его боковой поверхности является сектор с дугой 270°. Прямоугольный треугольник с катетами а и & вращается вокруг гипотенузы. Найдите площадь поверхности полученного тела. Равнобедренная трапеция, основания которой равны 6 см и 10 см, а острый угол 60°, вращается вокруг большего основания. Вычислите площадь поверхности полученного тела.

Высота конуса равна 4 см, а радиус основания равен 3 см. Вычислите площадь полной поверхности правильной n-угольной пирамиды, вписанной в конус*, если: а) п = 3; б) п = 4; в) п - 6. Диагонали осевого сечения усеченного конуса перпендикулярны. Одно из оснований осевого сечения равно 40 см, а его площадь равна 36 дм2. Вычислите площади боковой и полной поверхностей усеченного конуса.

Докажите, что: а) центр сферы является центром симметрии сферы; б) любая прямая, проходящая через центр сферы, является осью симметрии сферы; в) любая плоскость, проходящая через центр сферы, является плоскостью симметрии сферы.

Вершины прямоугольного треугольника с катетами 1,8 см и 2,4 см лежат на сфере, а) Докажите, что если радиус сферы равен 1,5 см, то центр сферы лежит в плоскости треугольника, б) Найдите расстояние от центра сферы до плоскости треугольника, если радиус сферы равен 6,5 см.

Точка А лежит на радиусе данной сферы с центром О и делит этот радиус в отношении 1:2, считая от центра сферы. Через точку А проведена плоскость а так, что радиус сферы с центром О, касающейся плоскости а, в 6 раз меньше радиуса данной сферы. Найдите: а) угол между прямой ОА и плоскостью а; б) отношение площади сечения данной сферы плоскостью а к площади самой сферы. Найдите координаты точек пересечения сферы, заданной уравнением (х - З)2 + у2 + (г + 5)2 = 25, с осями координат.

Найдите радиус сечения сферы х2 + у2 + г2 — 36 плоскостью, проходящей через точку М (2; 4; 5) и перпендикулярной к оси абсцисс. Два прямоугольника лежат в различных плоскостях и имеют общую сторону. Докажите, что все вершины данных прямоугольников лежат на одной сфере.

Расстояние между центрами двух равных сфер меньше их диаметра.

а)    Докажите, что пересечением этих сфер является окружность.

б)    Найдите радиус этой окружности, если радиусы сфер равны R, а расстояние между их центрами равно l,6iZ.

Точки А, Б, С и D лежат на сфере радиуса R, причем ZADB = = ZBDC = ZCDA = 2<р, AD = BD = CD. Найдите: а) АВ и AD;

б) площадь сечения сферы плоскостью ABC.

* Пирамида называется вписанной в конус, если ее основание вписано в основание конуса, а вершина пирамиды совпадает с вершиной конуса.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, «154», 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256



Все учебники по геометрии:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.