ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] [ Алгебра ] « Геометрия » [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009

Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009

Страница № 120.

Учебник: Геометрия. 10—11 классы: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 18-е изд. — М. : Просвещение, 2009. — 255 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, «120», 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

467

468

469

470

471

472

473

474

475

476

477

В прямоугольном параллелепипеде ABCDAXBXCXDX АВ = ВС = •

Найдите угол между прямыми: a) BD и CDX; б) АС и АСХ.

В прямоугольном параллелепипеде ABCDAXBXCXDX АВ = 1, ВС = 2, ВВХ = 3. Вычислите косинус угла между прямыми: а) АС и DXB;

б)    АВХ и ВСХ; в) AXD и АСХ.

В кубе ABCDAxBxCaD1 диагонали грани ABCD пересекаются в точке Ny а точка М лежит на ребре AXDX, причем АХМ : MDX = 1:4. Вычислите синус угла между прямой MN и плоскостью грани: a) ABCD; б) DDXCXC; в) AAXDXD.

В тетраэдре ABCD ZABD = ZABC = ZDBC = 90э, АВ = BD = 2, ВС = 1. Вычислите синус угла между прямой, проходящей через середины ребер AD и ВС, и плоскостью грани: a) ABD; б) DBC;

в)    ABC.

Докажите, что угол между скрещивающимися прямыми, одна из которых содержит диагональ куба, а другая — диагональ грани куба, равен 90°.

Дан куб MNPQMXNXPXQX. Докажите, что прямая РМХ перпендикулярна к плоскостям MNXQX и QNPX.

Лучи ОА, ОВ и ОС образуют три прямых угла АОВ, АОС и ВОС. Найдите угол между биссектрисами углов СОА и АОВ.

В прямоугольном параллелепипеде ABCDAXBXCXDX ZBACX =ZDACX = = 60°. Найдите <p = ZAXACX.

Решение

Зададим прямоугольную систему координат Oxyz так, как показано на рисунке 140, и рассмотрим единичный вектор а, со-

направленный с вектором АСХ. Вектор а имеет координаты {cos 60°; cos 60°; cos ф}, или ||; i; cos ф }. Так как j а ' = 1, то получим равенство

- + i + cos 4 4

ИЛИ COS ф = ±

_ У'2

2 ф = 1. Отсюда Так как угол ф

острый, то cos ф

^у-, откуда ф = 45(

В тетраэдре DABC DA = 5 см, АВ = 4 см, АС = 3 см, ZBAC = 90°, ZDAB = 60°, ZDAC = 45°. Найдите расстояние от вершины А до точки пересечения медиан треугольника DBC.

Угол между диагональю АСХ прямоугольного параллелепипеда ABCDAXBXCXDX и каждым из ребер АВ и AD равен 60°. Найдите ZCACX.

Проекция точки К на плоскость квадрата ABCD совпадает с центром этого квадрата. Докажите, что угол между прямыми АК и BD равен 90°.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, «120», 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256



Все учебники по геометрии:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.