|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 11 класс. Задачник (Е. В. Потоскуев, Л. И. Звавич) 2004Страница № 036.Учебник: Геометрия. 11 кл.: Задачник для общеобразовательных учреждений с углуб. и профильным изучением математики / Е. В. Потоскуев, Л. И. Звавич. — 2-е изд., стереотип. — М.: Дрофа, 2004. — 240 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, «36», 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236
OCR-версия страницы из учебника (текст страницы, которая находится выше):О ГГ 2. tg ф > . В этом случае секущая плоскость а пересекает аУз верхнее основание призмы по отрезку КгМ^ВС (см. рис. 9). Сечением призмы является равнобедренная (почему?) трапеция BJiTjMjC. Обозначим Pl = AlEl n К1М1, где Е1 — середина BjCj. Тогда PtE _L ВС, поэтому ZAEPj — ф. Проведем отрезки КгК, РгР, МгМ параллельно ААг, где К е АВ, Р е АЕ, М е АС. Отсюда равнобедренная (почему?) трапеция ВКМС — ортогональная проекция сечения BJiTjMjC на плоскость нижнего основания. Значит, sBKiMiC = SBKMC = Ш±1*£-РЕ. Так как PjPHAjA, то РХР = АХА = Н. Тогда ДРРХ.Е(/.Р = 90°): РЕ = РгЕ • cos ф = Н • ctg ф. ЛАСВ: АР = АЕ - РЕ = Sb/l - Я-ctg ф = а-/3 - 2ffctg Ф 2 2 Из параллельности JiTAf HJiTjAft и JSTjMjBC следует JSTM||BC, поэтому ААКМ ™ ЛАВС. Следовательно, : ВС = АР : АЕ; откуда АЖ = ВС'АР = а(аУз - 2Я ctg ф) = За - 2УЗЯ ctg ф АЕ -Уз 3 2 За - 2л/ЗЯ ctg ф _|_ Получаем SBA-MC = -§_- • Я ctg ф = (За-УЗЯ ctg Ф)-Я ctg Ф Таким образом? Si (За - УЗЯ ctg ф) • Я ctg ф Я(3а - УЗЯ ctg ф) 3cos ф 3 sin ф Ответ- q2/^ ; Д~(3а - УЗЯ ctg ф) 4cos ф’ 3sin ф 2.035. Основанием наклонной призмы ABCAjBjCj является равнобедренный треугольник ABC, в котором АС = АВ = 13 см, ВС = 10 см, а боковое ребро призмы образует с плоскостью основания угол в 45°. Проекцией вершины А1 является точка пересечения медиан треугольника ABC. Найдите площадь грани CCjBjB. 2.036. Каждое ребро треугольной призмы равно а. Зная, что плоские углы одного из трехгранных углов призмы рав Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, «36», 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236
Учебник: Геометрия. 11 кл.: Задачник для общеобразовательных учреждений с углуб. и профильным изучением математики / Е. В. Потоскуев, Л. И. Звавич. — 2-е изд., стереотип. — М.: Дрофа, 2004. — 240 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.