ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (Виленкин Н.Я., Сурвилло Г.С. и др.) 2006

Алгебра, 9 класс (Виленкин Н.Я., Сурвилло Г.С. и др.) 2006

Страница № 145.

Учебник: Алгебра. 9 класс. С углубленным изучением математики. Виленкин Н.Я., Сурвилло Г.С. и др. 7-е изд. - М.: Просвещение, 2006. - 368 с.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, «145», 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

R3(x) = R2(x)-B(x) • q3 =

= 15x4-5x3-10x2 + 31x-6-(x4 + 3x3 + 5) • 15=    (5)

= - 50x3 - IOjc2 + 31x - 81

имеет степень 3, меньшую, чем степень делителя В(х)9 поэтому найденный многочлен R3(x) является искомым остатком, а многочлен Q(x) = (Ji + q2 + <ls — неполным частным при делении многочлена А (jc)

на В(х). В самом деле, мы получили

А(х)-В(х) * ql = R1(x), R1(x)-B(x) • q2 = R2(x), R2(x)-B(x) • q3 = R3(x).

Отсюда находим

A(x) = B(x) • q1+R1(x) = B(x) • q1+B(x) • q2 + R2(x) = В(x) • (£i + £2) +

+ Б(х) • д3 + Д5(*) = Я(лО(?1 + ?2 + 9з) + Яз(*)> т. e. 2x6~-3jc4-5jc3 + jc-6 = (x4 + 3jc3 + 5)(2x2-6jc+15) + (-50jc3--10jc2 + 31jc-81).

Действия, выполняемые нами при делении многочлена на многочлен с остатком, были одни и те же на каждом этапе деления. На практике применяют запись деления уголком аналогично тому, как это делали при делении действительных чисел:

6 - Зх4 - 5х3 + х - 6 2хб + 6х5+ 10х2

х4 + Зх3 + 5

2-6х +15 = Q(x) (неполное частное)

- бх5 - Зх4 - 5х3 - 10х2 + х - 6 -бх5 - 18х4-30х

15х4 - 5х3 - 10х2 + 31х - 6 15х4 + 45х3 + 75

-50х3- 10x2 + 31jc-81 = R(x) (остаток)

Всякую рациональную дробь можно представить в виде отношения

А(х)

двух многочленов    При этом если степень многочлена А (х) мень

ше степени многочлена В(х), то рациональную дробь называют правильной, в противном случае ее называют неправильной. Если многочлен, стоящий в числителе неправильной дроби, разделить на многочлен, стоящий в знаменателе, то дробь можно представить в виде суммы многочлена (целой части) и правильной рациональной дроби.

_Ьх2 4" Ьх_1

Выделим из дроби - целую и правильную части.

х2 - 2х- 3

Решение. Данная дробь неправильная, так как степень многочлена в числителе 3, а в знаменателе 2. Разделим многочлен jc3 - 5jc2 + 5jc -1 на многочлен jc2-2jc-3, применив запись уголком:


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, «145», 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.