ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс (А. Г. Мордкович) 2001

Алгебра, 7 класс (А. Г. Мордкович) 2001

Страница № 055.

Учебник: Алгебра. 7 кл.: Учеб. для общеобразоват. учреждений. — 4-еизд., испр. А.Г. Мордкович — М.: Мнемозина, 2001. — 160 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, «55», 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

меняется, подобные одночлены можно расположить рядом, а затем сложить. Получим:

(6а3Ъ3 - 2а3£>3) + (- 5а - 7а) + (ЗЬ2 - 2Ьг) = 4а3Ь3 - 12а + Ь2.

Правда, обычно подобные одночлены в многочлене не переставляют, их одинаково подчеркивают, а потом складывают:

3Ъ3 - 5а - 7а + 3- 2а3£>3 - 2Ь2 = 4а3&3 -12а + Ь2.

Эту процедуру называют приведением подобных членов многочлена.

Если в многочлене все члены записаны в стандартном виде и приведены подобные члены, то говорят, что многочлен приведен к стандартному виду (или записан в стандартном виде).

Теперь вы понимаете, почему запись 4а3£>3 - 12а + Ь2 предпочтительнее первоначальной записи:

2аЪ2 • 3а2Ъ - 5а - 7а + 3&2 - | а2Ъ3 • 6а - 2Ъ21

Дело в том, что первоначальная запись — не стандартный вид многочлена, а 4а3£>3 - 12а + Ь2 — стандартный вид.

Любой многочлен можно привести к стандартному виду. Условимся в дальнейшем всегда с этого начинать — так удобнее производить действия с многочленами.

Обычно многочлен обозначают буквой р или Р — с этой буквы начинается греческое слово polys («многий», «многочисленный»; многочлены в математике называют также полиномами). В обозначение включают и переменные, из которых состоят члены многочлена. Например, многочлен 2х2 - 5х + 3 обозначают р(х) — читается: «пэотикс»; многочлен 2хг + +3ху - у4 обозначаютр(х, у) — читается: «пэ от икс, игрек» и т. д.

Пример. Дан многочлен

р (х, у) = 2х' Зху2 -7х3'2х- Зя4 + 2у* + Ьх2уг - 2ху • 4у2.

а)    Записать его в стандартном виде;

б)    вычислить: р (1, 2); р (- 1,1); р (0.1).

Р е ш е н и е. а) Имеем:

2х • 3ху2 - 7х3 • 2х - Зж4 + 2у* + Ъх2у2 - 2ху • 4у2 =

-- 6*У - 1Ах4 - Зх4 + 2у4 + Ъх2у2 - 8ху3 -

приведение

подобных

членов

стандартный

вид

многочлена


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, «55», 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.