ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс (А. Г. Мордкович) 2001

Алгебра, 7 класс (А. Г. Мордкович) 2001

Страница № 060.

Учебник: Алгебра. 7 кл.: Учеб. для общеобразоват. учреждений. — 4-еизд., испр. А.Г. Мордкович — М.: Мнемозина, 2001. — 160 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, «60», 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Это же правило действует и при умножении одночлена на многочлен:

- 5а(2а2 - ЗаЬ) = (- 5а) • 2а2 + (- 5а) • (- Sab) = - 10а3 + 15а2й (мы взяли пример 1, но поменяли местами множители).

Пр и м е р 2. Представить многочлен в виде произведения многочлена и одночлена, если:

а)Pi(*.    У) = 2х2у + Ах; б)р2(х, у) = х2 + Зу2.

Р е ш е н и е. а) Заметим, что 2хгу = 2х • ху, а Ах = 2х • 2. Значит,

гу + Ах = ху • 2х + 2 • 2х = (ху + 2) • 2х.

б)    В примере а) нам удалось в составе каждого члена многочлена Pi(x, у) = 2хгу + Ах выделить одинаковую часть (одинаковый множитель) 2х. Здесь же такой общей части нет. Значит, многочленр2(х, у) = х2 + Зу2 нельзя представить в виде произведения многочлена и одночлена. (И

На самом деле и многочлен р2(х, у) можно представить в виде произведения, например, так:

х2 + Зу2 = (2*2 + 6у2) • 0,5

или так:

х2 + 3у2 = (х2 + Зу2) • 1

— произведение числа на многочлен, но это искусственное преобразование и без большой необходимости не используется.

Кстати, требование представить заданный многочлен в виде произведения одночлена и многочлена встречается в математике довольно часто, поэтому указанной процедуре присвоено специальное название: вынесение общего множителя за скобки. Задание вынести общий множитель за скобки может быть корректным (как в примере 2а), а может быть и не совсем корректным (как в примере 26). В следующей главе мы специально рассмотрим этот вопрос.

В заключение параграфа решим задачи, которые покажут, как на практике для работы с математическими моделями реальных ситуаций приходится и составлять алгебраическую сумму многочленов, и умножать многочлен на одночлен. Так что эти операции мы изучаем не зря.

утаете

далее


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, «60», 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.