ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (А. Г. Мордкович, Н. П. Николаев) 2008

Алгебра, 9 класс (А. Г. Мордкович, Н. П. Николаев) 2008

Страница № 129.

Учебник: Алгебра. 9 кл.: учеб. для учащихся общеобразоват. учреждений / А. Г. Мордкович, Н. П. Николаев. — 3-еизд., перераб. — М.: Мнемозина, 2008. — 255 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, «129», 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Докажем для примера свойства 1) и 3).

Пусть функция у = f(x) достигает наименьшего значения на множестве X. Это значит, что существует такая точка х0 € X, что для любого х € X выполняется неравенство f(x) > f(x0). Но это (см. определение 3) как раз и означает ограниченность функции снизу.

Свойство 3) можно доказать методом от противного. Если предположить, что г/наим существует, то по свойству 1) функция ограничена снизу, что противоречит условию.

Пример 3. Исследовать функцию на ограниченность, найти наименьшее и наибольшее значения функции:

а)    у = 2х + 2 - 6 yj2x - 7;

б)    у = \1х2 - 6х + 8 + yj2x2 - Sx + 44;

в)    у = yjx2 - 4х + 13 - у/х2 - 4х + 5;

_ 5х2 + 10* + 14

г)    £/ - хг + 2х + 4

Решение, а) 2*+ 2- 6>/2x - 7 = (2jc - 7) - 6у/2х - 7 -h 9 =

= {у/2х - 7 - з) . Функция у - (у/2х - 7 - з) принимает только неотрицательные значения, значит, она ограничена снизу. Из

уравнения V 2х - 7 -3 = 0 находим х = 8; в этой точке функция достигает своего наименьшего значения унаим = 0. Сверху функция

не ограничена, поскольку выражение (у/2х - 7 - з) может принимать сколь угодно большие значения.

б) Введем обозначение: f(x) = у/х2 - 6х + 8 + у/2х2 - Ъх + 44. Найдем область определения функции. Для этого решим систему неравенств

jx2 - 6х + 8 > 0,

|2*2 - 8* + 44 > 0.

Из первого неравенства находим: х < 2; х > 4. Второе неравенство выполняется при любых значениях х, поскольку дискриминант квадратного трехчлена 2л;2 - 8х + 44 отрицателен, а старший коэффициент положителен. Значит, решения первого неравенства являются и решениями системы.

Итак, D(f) = (-оо; 2] U [4; +оо).

Имеем Z/ = у](х - З)2 - 1 + yj2(x - 2)2 + 36. На луче (-оо; 2] квадратичные функции г/ = (л: - З)2 - 1 и z/ = 2(л; - 2)2 + 36 не огра


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, «129», 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.