ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (А. Г. Мордкович, Н. П. Николаев) 2008

Алгебра, 9 класс (А. Г. Мордкович, Н. П. Николаев) 2008

Страница № 206.

Учебник: Алгебра. 9 кл.: учеб. для учащихся общеобразоват. учреждений / А. Г. Мордкович, Н. П. Николаев. — 3-еизд., перераб. — М.: Мнемозина, 2008. — 255 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, «206», 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

2) Предположим, что равенство (1) выполняется при п = k, т. е. предположим, что верно равенство

I3 + 23 + З3 + 43 + ... + k3 = (1 + 2 + 3 + 4 + ... + k)\ (2)

Докажем, что тогда проверяемое равенство (1) верно и при п = k + 1, т. е. докажем, что верно равенство

I3 + 23 + З3 + 43 + ... + k3 + (k + l)3 = (1 + 2 + 3 + 4 +

+ ... + k + (k + l))2

или, что то же самое,

(1 + 2 + 3 + 4 + ... + k + (k + l))2 - (l3 + 23 + З3 + 43 +

+ ... + k3) = (k + l)3.    (3)

Особо подчеркнем: равенство (3) интересует нас не само по себе. Представляет интерес только один вопрос — следует оно из равенства (2) или нет.

Заменив сумму кубов в левой части равенства (3) квадратом суммы из правой части равенства (2), получим:

(1 + 2 + 3 + 4 + ... -f k -f (k + l))2 — (1 + 2 + 3 + 4 + ... + k)2 =

= ((1 + 2 + 3 + 4 + ... + k + (k + 1)) - (1 + 2 + 3 + 4 + ... + k)) x x ((1 + 2 + 3 + 4 + ... + k + (k + 1)) + (1 + 2 + 3 + 4 + ... + k)) = = (k + 1) • (2(1 + 2 + 3 + ... + k) + (k + 1)) =

= (k + 1) • (2 • • h + (k + 1)) = (k + 1) • (*(* + l) + (* + 1» =

= (k + l)(ft + l)2 = (k + l)3.

Итак, из равенства (2) следует равенство (3).

Оба условия (базис индукции и индукционный шаг) принципа математической индукции выполняются, значит, равенство (1) верно для любого натурального значения п.    ■

Метод математической индукции используется в различных ситуациях. Так, в примере 1 мы применили этот метод для доказательства тождества, а в § 23 — для вывода формулы п-го члена арифметической прогрессии. Рассмотрим еще ряд примеров. Но сначала заметим, что иногда требуется доказать некоторое утверждение не для всех натуральных значений ть, как было до сих пор, а для п > р. Тогда на первом шаге проверяют справедливость утверждения не для п = 1, а для п = р, а в остальном схема применения метода математической индукции та же.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, «206», 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.