|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.
[ Все учебники ]
[ Букварь ]
[ Математика (1-6 класс) ]
« Алгебра »
[ Геометрия ]
[ Английский язык ]
[ Биология ]
[ Физика ]
[ Химия ]
[ Информатика ]
[ География ]
[ История средних веков ]
[ История Беларуси ]
[ Русский язык ]
[ Украинский язык ]
[ Белорусский язык ]
[ Русская литература ]
[ Белорусская литература ]
[ Украинская литература ]
[ Основы здоровья ]
[ Зарубежная литература ]
[ Природоведение ]
[ Человек, Общество, Государство ]
[ Другие учебники ]
7 класс -
8 класс -
9 класс -
10 класс -
11 класс
Алгебра и начала математического анализа, 10 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2009
Страница № 061.
Учебник: Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: профил. уровень / М. Я. Пратусевич, К. М. Столбов, А. Н. Головин. — М.: Просвещение, 2009. — 415 с.: ил.
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, «61», 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415
OCR-версия страницы из учебника (текст страницы, которая находится выше):
Эти определения естественны, но иногда расходятся с нашими обычными представлениями: когда мы говорим о следовании или равносильности, мы невольно (опираясь на привычный опыт) представляем себе какую-то связь между формами записи уравнений, «получение» одного уравнения из другого какими-то преобразованиями.
1 5
Равносильны ли уравнения-= 0 и —-= 0? Да! Множестве - 2 х6 + х + 1
во решений каждого уравнения пусто, поэтому они равносильны. При этом одно уравнение никак «не получается» из другого.
Наличие следования или равносильности между двумя уравнениями зависит, в том числе, и от областей определения этих уравнений. Напомним, что в определение уравнения входит множество М, на котором рассматривается это уравнение. В связи с этим говорят о равносильности уравнений на каком-то множестве чисел. Например, уравнения х2-4 = 0их-2 = 0 равносильны на множестве всех положительных чисел (или, например, на множестве натуральных чисел), но не равносильны на множестве R.
Обычно (кроме специально оговариваемых случаев) мы будем рассматривать уравнения на естественной области определения и говорить, что уравнения равносильны, опуская слова «на естественной области определения».
4, Логика решения уравнения. Преобразования уравнений
Рассмотрим несколько способов решения уравнений.
Использование равносильных преобразований
Этот метод состоит в приведении уравнения к простейшему уравнению х = а или совокупности уравнений такого вида (или к системе уравнений или неравенств или даже к совокупности таких систем, для каждой из которых ответ получается стандартным образом).
Особенность метода состоит в том, что на каждом шаге в цепочке преобразований не происходит изменения множества решений исходного уравнения, т. е. нет ни потери корней, ни приобретения посторонних корней.
Осталось понять, какие преобразования будут заменять уравнение равносильным ему (такие преобразования будем называть равносильными).
Например, в курсе основной школы мы пользовались тем, что множество решений уравнения не меняется, если:
1) к обеим частям уравнения прибавить одно и то же число;
2) обе части уравнения умножить (разделить) на одно и то же отличное от нуля число.
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, «61», 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415
Учебник: Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: профил. уровень / М. Я. Пратусевич, К. М. Столбов, А. Н. Головин. — М.: Просвещение, 2009. — 415 с.: ил.
Все учебники по алгебре:
Учебники по алгебре за 7 класс
- Алгебра, 7 класс (Е. П. Кузнецова и др.) 2009
- Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009
- Алгебра, 7 класс. Часть 2. Задачник (А. Г. Мордкович, Н. П. Николаев) 2009
- Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович) 2009
- Алгебра, 7 класс. Часть 2. Задачник (А. Г. Мордкович) 2009
- Алгебра, 7 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2008
- Алгебра, 7 класс (К. С. Муравин, Г. К. Муравин, Г. В. Дорофеев) 2001
- Алгебра, 7 класс (Ю.Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009
- Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005
- Алгебра, 7 класс. Задачник (А.Г. Мордкович, Т.Н. Мишустина, Б.Е. Тульчинская) 2001
- Алгебра, 7 класс (А. Г. Мордкович) 2001
- Алгебра, 7 класс (Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров и др.) 1991
- Алгебра, 7 класс (А.Г. Мерзляк, В.Б. Полонский, М.С. Якир) 2012
Учебники по алгебре за 8 класс
- Алгебра, 8 класс. Часть 1. Учебник (Мордкович А. Г.) 2010
- Алгебра, 8 класс. Часть 2. Задачник (Мордкович А.Г.) 2010
- Алгебра, 8 класс. Задачник (Л. И. Звавич, А. Р. Рязановский) 2008
- Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008
- Алгебра, 8 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2010
- Алгебра, 8 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2006
- Алгебра, 8 класс. Часть 2. Задачник (А. Г. Мордкович, Т. Н. Мишустина, Е. Е. Тульчинская) 2003
- Алгебра, 8 класс. Учебник (Мордкович А. Г.) 2001
- Алгебра, 8 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 1996
- Алгебра, 8 класс (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.) 2010
- Алгебра. Тесты для промежуточной аттестации. 7 — 8 класс. (Ф. Ф. Лысенко) 2009
- Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001
Учебники по алгебре за 9 класс
- Алгебра, 9 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2010
- Алгебра, 9 класс. Часть 2 из 2. Задачник (А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.) 2010
- Алгебра, 9 класс. Задачник (Л. И. Звавич, А. Р. Рязановский, П. В. Семенов) 2008
- Алгебра, 9 класс (А. Г. Мордкович, Н. П. Николаев) 2008
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2008
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2000
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009
- Алгебра, 9 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкии) 2006
- Алгебра, 9 класс. Задачник (А. Г. Мордкович, Т. Н. Мишустина, Е. Е. Тульчинская) 2002
- Алгебра, 9 класс (Мордкович А.Г.) 2002
- Алгебра, 9 класс (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.) 1995
- Алгебра, 9 класс (Н. Я. Виленкин, Г. С. Сурвилло, А. С. Симонов, А. И. Кудрявцев) 1996
- Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001
- Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2008
- Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2010
- Алгебра, 9 класс (Виленкин Н.Я., Сурвилло Г.С. и др.) 2006
- Сборник заданий для экзамена по алгебре, 9 класс (Л. В. Кузнецова, Е. А. Бунимович, Б. П. Пигарев, С. Б. Суворова) 2008
Учебники по алгебре за 10 класс
- Алгебра и начала математического анализа, 10 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2009
- Алгебра и начала математического анализа, 10 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и начала математического анализа, 10 класс (Ю. М. Колягин, Ю. В. Сидоров, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин) 2009
- Алгебра и начала математического анализа, 10 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2009
- Алгебра. Начала математического анализа, 10 класс (М. И. Шабунин, А. А. Прокофьев) 2007
- Алгебра и начала математического анализа, 10 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2009
- Математика, 10-й класс. Тесты для аттестации и контроля (Ф.Ф. Лысенко, С.Ю. Кулабухова) 2011
- Алгебра и начала анализа, 10 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2007
- Алгебра и начала анализа, 10-11 класс. Задачник (А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская) 2001
- Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001
- Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990
- Алгебра. Начала математического анализа, 10-11 класс (М. И. Шабунин, А. А. Прокофьев, Т. А. Олейник, Т. В. Соколова) 2009
- Дидактические материалы по алгебре и математическому анализу с ответами и решениями, 10—11 класс (В. И. Рыжик, Т. X. Черкасова) 2008
- Алгебра и начала математического анализа, 10—11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович) 2009
- Алгебра и начала математического анализа, 10—11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и начала анализа, 10 класс (А.Г. Мерзляк, Д.А. Номировский, В.Б. Полонский, М.С. Якир) 2012
Учебники по алгебре за 11 класс
- Алгебра и начала анализа, 10-11 класс. Задачник (А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская) 2001
- Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001
- Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990
- Алгебра. Начала математического анализа, 10-11 класс (М. И. Шабунин, А. А. Прокофьев, Т. А. Олейник, Т. В. Соколова) 2009
- Дидактические материалы по алгебре и математическому анализу с ответами и решениями, 10—11 класс (В. И. Рыжик, Т. X. Черкасова) 2008
- Алгебра и начала математического анализа, 10—11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович) 2009
- Алгебра и начала математического анализа, 10—11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и математический анализ для 11 класса (Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд) 1998
- Алгебра и начала математического анализа, 11 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2010
- Алгебра. Начала математического анализа, 11 класс (М. И. Шабунин, А. А. Прокофьев) 2008
- Алгебра и начала математического анализа, 11 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2009
- Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007
- Алгебра и начала математического анализа, 11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
|
|