ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и начала математического анализа, 10 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2009

Алгебра и начала математического анализа, 10 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2009

Страница № 161.

Учебник: Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: профил. уровень / М. Я. Пратусевич, К. М. Столбов, А. Н. Головин. — М.: Просвещение, 2009. — 415 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, «161», 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

111.2.    Верно ли утверждение:

а)    любой одночлен подобен сам себе;

б)    если один одночлен подобен другому, то этот другой подобен первому;

в)    два одночлена, подобные третьему, подобны друг другу? Сопоставьте эти утверждения со свойствами равенств и сравнений.

111.3.    Найдите степень многочлена:

а)    3аЪх2 - 7ах4;

б)    (х2 - 1) (х2 + 1) - х4;

в)    ах4 - t3y5 + (7 - t3)(5 - у5);

г)    (а2 + Ь2 + аЪ) ■ (а2 + Ъ2 - аЪ) - (а2 + Ъ2)2;

д)    (2х + Зу) (4у - Зх) - 2 (х + у)(4х - х2 - у); ч    О (-Ъх2 5 , 7 Л , _ (5х2 4 4 2

е)    2\—-^у + -*у ) + 3\-Т2+Ъху + Ъу

111.4.    Докажите, что deg(P + Q) max (deg Р; degQ), где Р и Q — некоторые многочлены от нескольких переменных. Приведите примеры, показывающие, что может быть как deg(P + Q) = = max (degР; degQ), так и deg(P + Q) < max (deg P; degQ).

111.5.    Докажите, что P (x) = Q (л;) тогда и только тогда, когда Р(х) - Q(*) = 0.

111.6.    Запишите в каноническом виде композиции Р (Q (х)) и Q(P(х)),

если:

а)    Р(х) - х2 - Зх + 2, Q(x) = х2 + Зх - 2;

б)    Р(х) = 2х2 - 1, Q(x) = 4х3 - Зх;

в)    Р(х) = 2х3 - 1, Q(jc) = Зх + 1.

Метод неопределенных коэффициентов Группа А

Ш.7. а) Приведите пример многочлена Р (х), для которого не существует многочлена f(x), такого, что Р (х) =    б) верно ли, что для данного многочлена Р(л;) существует не более одного многочлена f(x), такого, что f(f (x)) = Р(х)?

Ш.8. Найдите числа а и b из равенства

х4 + 2х3 - 16л:2 - 2х + 15 = (х + 1)(х3 + ах2 - 17х + Ъ).

III.9. При каких вещественных г и s выполнено равенство

х3 + гх2 + 2х - 1 = (х - s)(x2 - 2jc - 1) + 3?

III. 10. Найдите многочлен Р(х), удовлетворяющий тождеству:

а)    Р3(х) + хР(х) = 8х3 - 10х2 + 5х - 1;

б)    Р(х+ 1) + Р(х- 1) = 2х2 - 2х - 4;

в)    (2х - 1) Р2(х) + хР(х) = 2х5 - 5х4 + 13х3 - 14х2 + 14х - 4;

г)    Р(Р(х)) = 8х4 - 8х3 - 24х2 + 13х + 18;

д)    Р(Р(х)) = х4 - 2х3 - 2х2 + Зх + 1.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, «161», 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.