ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и математический анализ для 11 класса (Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд) 1998

Алгебра и математический анализ для 11 класса (Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд) 1998

Страница № 127.

Учебник: Алгебра и математический анализ для 11 класса: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики / Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд. — 6-е изд. — М.: Просвещение, 1998. — 288 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, «127», 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Пример 3. Решим неравенство

-\jx—а+У2х+1 >i/3jc—4.

Решение. Чтобы все корни, входящие в неравенство, имели значение, должны выполняться неравенства х^а, —i-,

4    4 _    ^

т. е. х^а и х^—. Так как при таких значениях х и а все

3    о

корни в (2) неотрицательны, то можно возвести обе части неравенства в квадрат. Получаем систему неравенств

2 -\/2дс2—(2 а— 1) х—а>а—5, х^а,

х>±

Разберем два случая: о<5и о>5. В первом случае а — 5<0 и потому первое неравенство системы справедливо для всех х, удовлетворяющих двум другим неравенствам. Отсюда получаем,

что при    решением системы (3) является луч |^-|-, +оо ^ ,

а при -|-<а<5 — луч [а, +оо).

Пусть теперь а^5. В этом случае обе части первого неравенства в системе (3) неотрицательны и можно возвести их в квадрат. Так как условие х^заведомо выполнено, то имеем систему

л *

неравенств

{ 8х2-4(2а—1)х—(а2-\ х^а.

■ 6а 25) О,

Заметим, что а2 — 6а+25=(а—3)2 + 16>0 при всех а и потому свободный член квадратного трехчлена отрицателен. Отсюда вытекает, что корни уравнения

8JC2—4 (2а— 1) х—(а2—6а+25)=0    (4)

имеют разные знаки.

Поскольку мы хотим, чтобы один из корней был не меньше, чем а, то (см. рис. 44) в точке а трехчлен должен принимать неположительные значения.

Отсюда получаем для а неравенство 8а2 — 4 (2а— 1) а—(а2—6а -|- 25)^0, т. е.

—(а—5)2<;0. Оно выполняется для всех а. Значит, один из корней уравнения (4), а именно больший, удовлетворяет условию х^а. Этот корень имеет вид:

х\ =-j- (2а— 1 +V6a2—16а+51).


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, «127», 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.