ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра и математический анализ для 11 класса (Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд) 1998

Алгебра и математический анализ для 11 класса (Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд) 1998

Страница № 133.

Учебник: Алгебра и математический анализ для 11 класса: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики / Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд. — 6-е изд. — М.: Просвещение, 1998. — 288 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, «133», 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Различные возможные случаи определяются знаками функции f{z)z=ai?—2z— 1 в точках —1 и 1, знаком а и положением и значением экстремума функции y=f(z). Имеем: f ( — 1)=а+1, f (1)=а—3. Далее, так как f' (z)=2az—2, то экстремум находится

в точке 2=-^- и является минимумом при а>0, максимумом

при а<0. Значение функции в точке экстремума равно —

Уравнение аг2 — 2г—1=0 имеет действительные корни при а> — 1. причем эти корни равны

а    а

Значения функции f (z)=az*—2z— 1 в, точках —1,1 ив точке экстремума меняют знак при следующих значениях а: —1, 0, 1 и 3. Поэтому разобьем числовую прямую на следующие промежутки: (—оо; —1); (—1; 0), (0; 3) и (3; + оо). Если а< — 1, то f (— 1) и f (1) отрицательны, отрицательно и значение экстремума,

находящегося в точке — промежутка (—1; 1). В этом случае

функция y=f(z) отрицательна во всех точках отрезка [—1; 1].

При — 1<а<0 значение функции положительно при г =— 1 и отрицательно при z=l. Точка экстремума лежит вне отрезка [—1; 1J. Поэтому функция имеет один корень на отрезке [—1; 1], а именно z\. Поэтому функция y=f(z) отрицательна на промежутке (zi; 1).

При 0<а<3 дело обстоит аналогичным образом. Пусть теперь а> 3. В этом случае функция y=f(z) положительна на концах отрезка [—1; 1], имеет на этом отрезке точку минимума, причем ее значение в этой точке отрицательно. Поэтому неравенство f(z)<0 имеет место на промежутке (zi; гг).

Итак, мы выяснили, каково решение системы (6). Возвраще-ясь к неравенству (5), получаем, что:

при а< — 1 неравенство выполняется для всех х; при — 1<а<0 и при 0<а<3

2яя — arccos гi<x<.2пп + arccos z\,

а при а>3

2пп — arccos z\ <Lx<2лп — arccos гг

или

2яп + arccos Z2<x< 2пп + arccos zi,

где    ___

zi=-^-(l — Vo+1), Z2=-^-(l+V°+1)-

Отметим еще, что при а= — 1 хфп (2n+1), при а=0

2пп-Ц-<х<2пп+Щ- и при а=3

О    о.

2ял — arccos( —<х<2лп или 2лпСх<2лпarccos( —


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, «133», 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.