|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.
[ Все учебники ]
[ Букварь ]
[ Математика (1-6 класс) ]
« Алгебра »
[ Геометрия ]
[ Английский язык ]
[ Биология ]
[ Физика ]
[ Химия ]
[ Информатика ]
[ География ]
[ История средних веков ]
[ История Беларуси ]
[ Русский язык ]
[ Украинский язык ]
[ Белорусский язык ]
[ Русская литература ]
[ Белорусская литература ]
[ Украинская литература ]
[ Основы здоровья ]
[ Зарубежная литература ]
[ Природоведение ]
[ Человек, Общество, Государство ]
[ Другие учебники ]
7 класс -
8 класс -
9 класс -
10 класс -
11 класс
Алгебра и математический анализ для 11 класса (Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд) 1998
Страница № 249.
Учебник: Алгебра и математический анализ для 11 класса: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики / Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд. — 6-е изд. — М.: Просвещение, 1998. — 288 с.: ил.
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, «249», 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288
OCR-версия страницы из учебника (текст страницы, которая находится выше):
жить слово «око» равна i, а вероятность сложить слово «ар»
Оо
равна . Это было бы верно, если бы последовательные извлече-
w <
ния жетонов из мешка были независимы друг от друга. Но так как жетоны обратно в мешок не возвращаются, то, вынув в первый раз букву «о», мы уже не получим ее при третьем извлечении. Поэтому вероятность получить слово «око» равна нулю. Чтобы найти вероятность получения слова «ар», заметим, что при двух извлечениях букв получаются всевозможные размещения без повторений из 33 букв по две, причем очевидно, что любые два таких размещения равновероятны. Так как общее число этих размещений равно Лзз=33*32= 1056, то вероятность сложить слово «ар» рав-
на "1056 -
Этот пример показывает, что при решении многих задач теории вероятностей оказываются полезными формулы комбинаторики — при определенных условиях у нас с равной вероятностью получаются размещения с повторениями (если, например, жетоны извлекаются и потом возвращаются обратно), размещения без повторений (если жетоны не возвращаются обратно), перестановки с повторениями и без повторений, сочетания и т. д. Долгое время комбинаторику бообще рассматривали как вспомогательную дисциплину для теории вероятностей, но теперь она приобрела самостоятельное значение.
Пример 4. Из мешка с 33 жетонами, помеченными буквами русского алфавита, вынимают 6 жетонов и располагают их в порядке извлечения. Какова вероятность получить слово «Москва», если: 1) жетоны после извлечения возвращаются обратно; 2) жетоны после извлечения обратно не возвращаются?
Решение.^ В случае 1 множество равновероятных исходов испытания сострит из всех размещений с повторениями из 33 элементов по 6. Их число равно Л|з=336. Поэтому искомая вероят1-ность равна ЗЗ-6. В случае 2 множество равновероятных исходов состоит из всех размещений без повторений из 33 элементов по 6. Их число равно Л®з=33*32*31 •30*29*28, и потому искомая
вероятность равна —
Пример 5. Из квадратиков с буквами сложили слово «Миссисипи», после чего квадратики положили в мешок и перемешали. Какова вероятность, что после поочередного извлечения квадратиков из мешка получится то же самое слово?
Решение. В данном случае равновероятными исходами являются появления любых перестановок с повторениями из одной буквы «м», 4 букв «и», 3 букв «с» и одной буквы «п». Число таких
9!
перестановок равно Р (1,4,3, 1)= п 4|3!~—=2520.
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, «249», 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288
Учебник: Алгебра и математический анализ для 11 класса: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики / Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд. — 6-е изд. — М.: Просвещение, 1998. — 288 с.: ил.
Все учебники по алгебре:
Учебники по алгебре за 7 класс
- Алгебра, 7 класс (Е. П. Кузнецова и др.) 2009
- Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009
- Алгебра, 7 класс. Часть 2. Задачник (А. Г. Мордкович, Н. П. Николаев) 2009
- Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович) 2009
- Алгебра, 7 класс. Часть 2. Задачник (А. Г. Мордкович) 2009
- Алгебра, 7 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2008
- Алгебра, 7 класс (К. С. Муравин, Г. К. Муравин, Г. В. Дорофеев) 2001
- Алгебра, 7 класс (Ю.Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009
- Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005
- Алгебра, 7 класс. Задачник (А.Г. Мордкович, Т.Н. Мишустина, Б.Е. Тульчинская) 2001
- Алгебра, 7 класс (А. Г. Мордкович) 2001
- Алгебра, 7 класс (Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров и др.) 1991
- Алгебра, 7 класс (А.Г. Мерзляк, В.Б. Полонский, М.С. Якир) 2012
Учебники по алгебре за 8 класс
- Алгебра, 8 класс. Часть 1. Учебник (Мордкович А. Г.) 2010
- Алгебра, 8 класс. Часть 2. Задачник (Мордкович А.Г.) 2010
- Алгебра, 8 класс. Задачник (Л. И. Звавич, А. Р. Рязановский) 2008
- Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008
- Алгебра, 8 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2010
- Алгебра, 8 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2006
- Алгебра, 8 класс. Часть 2. Задачник (А. Г. Мордкович, Т. Н. Мишустина, Е. Е. Тульчинская) 2003
- Алгебра, 8 класс. Учебник (Мордкович А. Г.) 2001
- Алгебра, 8 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 1996
- Алгебра, 8 класс (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.) 2010
- Алгебра. Тесты для промежуточной аттестации. 7 — 8 класс. (Ф. Ф. Лысенко) 2009
- Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001
Учебники по алгебре за 9 класс
- Алгебра, 9 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2010
- Алгебра, 9 класс. Часть 2 из 2. Задачник (А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.) 2010
- Алгебра, 9 класс. Задачник (Л. И. Звавич, А. Р. Рязановский, П. В. Семенов) 2008
- Алгебра, 9 класс (А. Г. Мордкович, Н. П. Николаев) 2008
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2008
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2000
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009
- Алгебра, 9 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкии) 2006
- Алгебра, 9 класс. Задачник (А. Г. Мордкович, Т. Н. Мишустина, Е. Е. Тульчинская) 2002
- Алгебра, 9 класс (Мордкович А.Г.) 2002
- Алгебра, 9 класс (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.) 1995
- Алгебра, 9 класс (Н. Я. Виленкин, Г. С. Сурвилло, А. С. Симонов, А. И. Кудрявцев) 1996
- Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001
- Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2008
- Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2010
- Алгебра, 9 класс (Виленкин Н.Я., Сурвилло Г.С. и др.) 2006
- Сборник заданий для экзамена по алгебре, 9 класс (Л. В. Кузнецова, Е. А. Бунимович, Б. П. Пигарев, С. Б. Суворова) 2008
Учебники по алгебре за 10 класс
- Алгебра и начала математического анализа, 10 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2009
- Алгебра и начала математического анализа, 10 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и начала математического анализа, 10 класс (Ю. М. Колягин, Ю. В. Сидоров, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин) 2009
- Алгебра и начала математического анализа, 10 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2009
- Алгебра. Начала математического анализа, 10 класс (М. И. Шабунин, А. А. Прокофьев) 2007
- Алгебра и начала математического анализа, 10 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2009
- Математика, 10-й класс. Тесты для аттестации и контроля (Ф.Ф. Лысенко, С.Ю. Кулабухова) 2011
- Алгебра и начала анализа, 10 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2007
- Алгебра и начала анализа, 10-11 класс. Задачник (А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская) 2001
- Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001
- Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990
- Алгебра. Начала математического анализа, 10-11 класс (М. И. Шабунин, А. А. Прокофьев, Т. А. Олейник, Т. В. Соколова) 2009
- Дидактические материалы по алгебре и математическому анализу с ответами и решениями, 10—11 класс (В. И. Рыжик, Т. X. Черкасова) 2008
- Алгебра и начала математического анализа, 10—11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович) 2009
- Алгебра и начала математического анализа, 10—11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и начала анализа, 10 класс (А.Г. Мерзляк, Д.А. Номировский, В.Б. Полонский, М.С. Якир) 2012
Учебники по алгебре за 11 класс
- Алгебра и начала анализа, 10-11 класс. Задачник (А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская) 2001
- Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001
- Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990
- Алгебра. Начала математического анализа, 10-11 класс (М. И. Шабунин, А. А. Прокофьев, Т. А. Олейник, Т. В. Соколова) 2009
- Дидактические материалы по алгебре и математическому анализу с ответами и решениями, 10—11 класс (В. И. Рыжик, Т. X. Черкасова) 2008
- Алгебра и начала математического анализа, 10—11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович) 2009
- Алгебра и начала математического анализа, 10—11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и математический анализ для 11 класса (Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд) 1998
- Алгебра и начала математического анализа, 11 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2010
- Алгебра. Начала математического анализа, 11 класс (М. И. Шабунин, А. А. Прокофьев) 2008
- Алгебра и начала математического анализа, 11 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2009
- Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007
- Алгебра и начала математического анализа, 11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
|
|