ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович) 2009

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович) 2009

Страница № 026.

Учебник: Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. — 13-е изд., испр. — М.: Мнемозина, 2009. — 160 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, «26», 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Пусть, например, число а меньше числа Ь. На алгебраическом языке это записывают так: а < Ь; на геометрическом языке это означает, что точка а расположена на координатной прямой левее точки Ь. Впрочем, подчеркнем еще раз: и алгебраический, и геометрический языки — это разделы одного и того же математического языка, который мы с вами изучаем.

Познакомимся еще с несколькими элементами математического языка, которые связаны с координатной прямой.

1. Пусть на координатной прямой отмечена точка а. Рассмотрим все точки, которые лежат на прямой правее точки а, и отметим соответствующую часть координатной прямой штриховкой (рис. 6). Это множество точек (чисел) называют открытым лучом и обозначают (а; + оо), где знак + оо читают так: «плюс бесконечность»; оно характеризуется неравенством х > а (под х понимают любую точку луча).

Обратите внимание: точка а открытому лучу не принадлежит. Если же эту точку надо присоединить к открытому лучу, то пишут х > а или [а; +оо) (перед а ставят не круглую, а квадратную скобку), а на чертеже такую точку обозначают не светлым, как на рисунке 6, а закрашенным кружком (рис. 7). Если про множество точек (а; +оо) говорят, что это — открытый луч, то для [а; +оо) употребляют термин луч (без прилагательного

2. Пусть на координатной прямой отмечена точка b. Рассмотрим все точки, которые лежат на прямой левее точки b, и отметим соответствующую часть координатной прямой штриховкой (рис. 8). Это множество точек (чисел) также называют открытым лучом и обозначают (-оо; Ь)у где знак -оо читается: «минус бесконечность». Оно характеризуется неравенством х < Ь.

Снова обращаем ваше внимание на то, что точка b открытому лучу не принадлежит. Если же мы эту точку хотим присоединить к открытому лучу, то будем писать х < b или (-оо; Ъ\ и на чертеже точку b закрашивать (рис. 9); для (-оо; Ь] также будем употреблять термин луч.

«открытый»).

а    х

Рис. 6

а    х

Рис. 7

Ъ х

WWWWWWVq    р

Рис. 8

Ъ х

wmwwwsfr_р.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, «26», 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.