ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008

Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008

Страница № 018.

Учебник: Алгебра. 8 класс: учеб. для учащихся общеобразоват. учреждений / А. Г. Мордкович, Н. П. Николаев. — 4-е изд., перераб. — М.: Мнемозина, 2008. — 240 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, «18», 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Пример 1. Доказать тождество

I 2а    4а2 \ 2а ^ 1 ) ^ 8аг

гИ

2а + Ь 4а2 + 4ab + Ь2) ’ \ 4а2 - Ъ2 Ь - 2а) 2а + Ь

2а.

Решение.

Доказать тождество — это значит установить, что при всех допустимых значениях переменных его левая и правая части равны. В алгебре тождества доказывают разными способами:

1)    выполняют преобразования левой части и в итоге получают правую часть;

2)    выполняют преобразования правой части и в итоге получают левую часть;

3)    по отдельности преобразуют правую и левую части и получают и в первом и во втором случаях одно и то же выражение;

4)    составляют разность левой и правой частей и в результате ее преобразований получают нуль.

Какой способ выбрать — зависит от конкретного вида тождества, которое вам предлагается доказать. В данном примере целесообразно выбрать первый способ.

Для преобразования рациональных выражений принят тот же порядок действий, что и для преобразования числовых выражений. Это значит, что сначала выполняют действия в скобках, затем действия второй ступени (умножение, деление, возведение в степень), затем действия первой ступени (сложение, вычитание). Выполним преобразования по действиям:

2 а    4 а2    2 а^±    4а2

1)

2 а + Ь 4 а2 + 4 ab + Ь2 2 а + Ь (2а + Ь)2

_ 2а(2а + Ь) - 4а2 _ 4а2 + 2ab - 4а2 _ 2ab (2а + Ь)2 ~ (2а + Ъ)2 ~ (2а + Ь)2

2)

2а , 1 __2а_ 1

,2а + Ь

3)

22 Ъ- 2а (2а - Ь)(2а + Ь) 2а - Ь

_ 2а — (2а + Ъ) _ 2а — 2а — b _ _-Ь_

- (2а - Ь)(2а + Ь) ~ (2а - Ь)(2а + Ь) ~ (2а - Ь)(2а + Ъ)’

2ab .    -Ъ    _ 2аЬ(2а - Ь)(2а + Ь) _

(2а + Ь)2 ’ (2а - Ъ)(2а + Ъ)    (2а + Ь)2 • Ъ

_ 2а(2а - Ь) _ -(4а2 - 2ab) _ 2ab - 4а2

2 а + Ь    2а + Ь    2 а + Ь '


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, «18», 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.