ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008

Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008

Страница № 043.

Учебник: Алгебра. 8 класс: учеб. для учащихся общеобразоват. учреждений / А. Г. Мордкович, Н. П. Николаев. — 4-е изд., перераб. — М.: Мнемозина, 2008. — 240 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, «43», 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

сегментов слева направо начинаем с нуля: Д0, Дх, Д9 (А — прописная буква греческого алфавита дельта). Предположим, что М € Д4. Это значит, что х = 0,4... . Разделим отрезок Д4 на 10 равных частей — это сегменты второго ранга, обозначим их Д40, Д41, ... , Д49. Предположим, что М € Д40. Это значит, что х = 0,40... . Так постепенно находятся последовательные знаки бесконечной десятичной дроби, служащей координатой точки М.

А как будет обстоять дело с координатой точки, служащей концом какого-либо сегмента? Пусть х = 0,73. Это — координата общего конца сегментов второго ранга Д72 и Д73 (см. рис. 5), сегментов третьего ранга Д729 и Д730, сегментов четвертого ранга Д7299 и Д7300 и т. д. Следовательно, 0,72(9) = 0,73(0), что мы уже установили другим способом в конце § 7.

Математики обычно говорят так: между множеством R действительных чисел и множеством точек координатной прямой установлено взаимно однозначное соответствие. Координатная прямая есть геометрическая модель множества действительных чисел; по этой причине для координатной прямой часто используют термин числовая прямая.

Вдумайтесь в этот термин: не кажется ли он вам противоестественным? Ведь число — объект алгебры, а прямая — объект геометрии. Нет ли тут «смешения жанров»? Нет, все логично, все продумано. Этот термин в очередной раз подчеркивает единство различных областей математики, дает возможность отождествления понятий «действительное число» и «точка на координатной (числовой) прямой».

Обратите внимание: координатной прямой вы пользовались начиная с 5-го класса. Но, оказывается, в ваших знаниях был вполне оправданный пробел: не для любой точки координатной прямой вы сумели бы найти координату — просто учитель оберегал вас от такой неприятности.

Рассмотрим пример. Дана координатная прямая, на ее единичном отрезке, как на катете, построен прямоугольный треугольник, второй катет которого равен 2 (рис. 6). Гипотенуза ОВ треугольника отложена на координатной прямой от точки О вправо, получилась точка D.

Чему равна координата точки D? Она

равна длине диагонали квадрата, т. е.    О 1

Это число, как мы теперь знаем,    рис ^

N

\

\

\

\

—L

Тб.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, «43», 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.