|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.
[ Все учебники ]
[ Букварь ]
[ Математика (1-6 класс) ]
« Алгебра »
[ Геометрия ]
[ Английский язык ]
[ Биология ]
[ Физика ]
[ Химия ]
[ Информатика ]
[ География ]
[ История средних веков ]
[ История Беларуси ]
[ Русский язык ]
[ Украинский язык ]
[ Белорусский язык ]
[ Русская литература ]
[ Белорусская литература ]
[ Украинская литература ]
[ Основы здоровья ]
[ Зарубежная литература ]
[ Природоведение ]
[ Человек, Общество, Государство ]
[ Другие учебники ]
7 класс -
8 класс -
9 класс -
10 класс -
11 класс
Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008
Страница № 185.
Учебник: Алгебра. 8 класс: учеб. для учащихся общеобразоват. учреждений / А. Г. Мордкович, Н. П. Николаев. — 4-е изд., перераб. — М.: Мнемозина, 2008. — 240 с.: ил.
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, «185», 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240
OCR-версия страницы из учебника (текст страницы, которая находится выше):
Теорема 4. Пусть все коэффициенты многочлена р(х) — целые числа. Если целое число а является корнем многочлена р(х), то а — делитель свободного члена многочлена р(х).
Доказательство проведем для случая, когда р(х) — многочлен третьей степени: р(х) = Ьх3 + сх2 + dx + т, где все коэффициенты Ь, с, d, т — целые числа. По условию, целое число а является корнем многочлена р(х). Это значит, что р(а) = 0, т. е.
Ьа3 + ca2 + da + т = 0.
Преобразуем полученное равенство к виду т = a(-ba2 - ca - d) и обозначим целое число -Ъа2 - ca - d буквой k. Тогда последнее равенство можно переписать в виде т = ak, а это и означает, что число а — делитель числа т, т. е. делитель свободного члена многочлена р(х).
Аналогично проводится доказательство теоремы для случая, когда р(х) — многочлен 4-й, 5-й и вообще п-й степени.
Пример 5. Разложить на множители многочлен р(х) = х3 - 4х2 + х + 6.
Решение. Попробуем найти целочисленные корни этого многочлена. Если они есть, то, по теореме 4, их следует искать среди делителей свободного члена заданного многочлена, т. е. среди делителей числа 6. Выпишем эти делители — «кандидаты в целочисленные корни»: ±1, ±2, ±3, ±6. Будем подставлять выписанные значения поочередно в выражение для р(х):
P( 1) = 4*0; р(-1) = 0.
Итак, х = -1 — корень многочлена р(х), значит, р(х) делится на х + 1.
Разделим многочлен р(х) на двучлен х + 1:
х - 4х2 + х + 6 \х+1_
~*8 + *2 *2-5* + 6
_-5*2 + х -Ьх2 - Ьх
_6х + 6 6х + 6
0
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, «185», 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240
Учебник: Алгебра. 8 класс: учеб. для учащихся общеобразоват. учреждений / А. Г. Мордкович, Н. П. Николаев. — 4-е изд., перераб. — М.: Мнемозина, 2008. — 240 с.: ил.
Все учебники по алгебре:
Учебники по алгебре за 7 класс
- Алгебра, 7 класс (Е. П. Кузнецова и др.) 2009
- Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009
- Алгебра, 7 класс. Часть 2. Задачник (А. Г. Мордкович, Н. П. Николаев) 2009
- Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович) 2009
- Алгебра, 7 класс. Часть 2. Задачник (А. Г. Мордкович) 2009
- Алгебра, 7 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2008
- Алгебра, 7 класс (К. С. Муравин, Г. К. Муравин, Г. В. Дорофеев) 2001
- Алгебра, 7 класс (Ю.Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009
- Алгебра, 7 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2005
- Алгебра, 7 класс. Задачник (А.Г. Мордкович, Т.Н. Мишустина, Б.Е. Тульчинская) 2001
- Алгебра, 7 класс (А. Г. Мордкович) 2001
- Алгебра, 7 класс (Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров и др.) 1991
- Алгебра, 7 класс (А.Г. Мерзляк, В.Б. Полонский, М.С. Якир) 2012
Учебники по алгебре за 8 класс
- Алгебра, 8 класс. Часть 1. Учебник (Мордкович А. Г.) 2010
- Алгебра, 8 класс. Часть 2. Задачник (Мордкович А.Г.) 2010
- Алгебра, 8 класс. Задачник (Л. И. Звавич, А. Р. Рязановский) 2008
- Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008
- Алгебра, 8 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2010
- Алгебра, 8 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2006
- Алгебра, 8 класс. Часть 2. Задачник (А. Г. Мордкович, Т. Н. Мишустина, Е. Е. Тульчинская) 2003
- Алгебра, 8 класс. Учебник (Мордкович А. Г.) 2001
- Алгебра, 8 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 1996
- Алгебра, 8 класс (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.) 2010
- Алгебра. Тесты для промежуточной аттестации. 7 — 8 класс. (Ф. Ф. Лысенко) 2009
- Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001
Учебники по алгебре за 9 класс
- Алгебра, 9 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2010
- Алгебра, 9 класс. Часть 2 из 2. Задачник (А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.) 2010
- Алгебра, 9 класс. Задачник (Л. И. Звавич, А. Р. Рязановский, П. В. Семенов) 2008
- Алгебра, 9 класс (А. Г. Мордкович, Н. П. Николаев) 2008
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов) 2008
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2000
- Алгебра, 9 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2009
- Алгебра, 9 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкии) 2006
- Алгебра, 9 класс. Задачник (А. Г. Мордкович, Т. Н. Мишустина, Е. Е. Тульчинская) 2002
- Алгебра, 9 класс (Мордкович А.Г.) 2002
- Алгебра, 9 класс (Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др.) 1995
- Алгебра, 9 класс (Н. Я. Виленкин, Г. С. Сурвилло, А. С. Симонов, А. И. Кудрявцев) 1996
- Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001
- Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2008
- Алгебра, 9 класс (Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др.) 2010
- Алгебра, 9 класс (Виленкин Н.Я., Сурвилло Г.С. и др.) 2006
- Сборник заданий для экзамена по алгебре, 9 класс (Л. В. Кузнецова, Е. А. Бунимович, Б. П. Пигарев, С. Б. Суворова) 2008
Учебники по алгебре за 10 класс
- Алгебра и начала математического анализа, 10 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2009
- Алгебра и начала математического анализа, 10 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и начала математического анализа, 10 класс (Ю. М. Колягин, Ю. В. Сидоров, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин) 2009
- Алгебра и начала математического анализа, 10 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2009
- Алгебра. Начала математического анализа, 10 класс (М. И. Шабунин, А. А. Прокофьев) 2007
- Алгебра и начала математического анализа, 10 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2009
- Математика, 10-й класс. Тесты для аттестации и контроля (Ф.Ф. Лысенко, С.Ю. Кулабухова) 2011
- Алгебра и начала анализа, 10 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2007
- Алгебра и начала анализа, 10-11 класс. Задачник (А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская) 2001
- Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001
- Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990
- Алгебра. Начала математического анализа, 10-11 класс (М. И. Шабунин, А. А. Прокофьев, Т. А. Олейник, Т. В. Соколова) 2009
- Дидактические материалы по алгебре и математическому анализу с ответами и решениями, 10—11 класс (В. И. Рыжик, Т. X. Черкасова) 2008
- Алгебра и начала математического анализа, 10—11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович) 2009
- Алгебра и начала математического анализа, 10—11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и начала анализа, 10 класс (А.Г. Мерзляк, Д.А. Номировский, В.Б. Полонский, М.С. Якир) 2012
Учебники по алгебре за 11 класс
- Алгебра и начала анализа, 10-11 класс. Задачник (А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчинская) 2001
- Алгебра и начала анализа, 10-11 класс (Мордкович А.Г.) 2001
- Алгебра и начала анализа, 10—11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990
- Алгебра. Начала математического анализа, 10-11 класс (М. И. Шабунин, А. А. Прокофьев, Т. А. Олейник, Т. В. Соколова) 2009
- Дидактические материалы по алгебре и математическому анализу с ответами и решениями, 10—11 класс (В. И. Рыжик, Т. X. Черкасова) 2008
- Алгебра и начала математического анализа, 10—11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович) 2009
- Алгебра и начала математического анализа, 10—11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
- Алгебра и математический анализ для 11 класса (Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд) 1998
- Алгебра и начала математического анализа, 11 класс (М. Я. Пратусевич, К. М. Столбов, А. Н. Головин) 2010
- Алгебра. Начала математического анализа, 11 класс (М. И. Шабунин, А. А. Прокофьев) 2008
- Алгебра и начала математического анализа, 11 класс (С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин) 2009
- Алгебра и начала анализа, 11 класс. Часть 1 из 2. Учебник (А. Г. Мордкович, П. В. Семенов) 2007
- Алгебра и начала математического анализа, 11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009
|
|