ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008

Алгебра, 8 класс (А. Г. Мордкович, Н. П. Николаев) 2008

Страница № 175.

Учебник: Алгебра. 8 класс: учеб. для учащихся общеобразоват. учреждений / А. Г. Мордкович, Н. П. Николаев. — 4-е изд., перераб. — М.: Мнемозина, 2008. — 240 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, «175», 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Для любых заданных натуральных чисел можно найти НОД. Например, НОД(45, 75, 120) = 15, НОД(27, 81) = 27.

Определение. Два натуральных числа а и с называют взаимно простыми числами, если у них нет общих делителей, отличных от 1; иными словами, если НОД (а, с) = 1.

Например, взаимно простыми являются числа 35 и 36, хотя каждое из них — составное число. В самом деле, у числа 35 четыре делителя: 1, 5, 7, 35, — а у числа 36 девять делителей: 1,

2, 3, 4, 6, 9, 12, 18, 36. Общих делителей, отличных от 1, у чисел 35 и 36 нет.

Вполне очевидно следующее утверждение: если даны натуральные числа аир, причем р — простое число, то либо а делится на р, либо аир — взаимно простые числа.

Рассмотрим два числа 12 и 18. Выпишем кратные числа 12:

12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, ....

Выпишем теперь кратные числа 18:

18, 36, 54, 72, 90, 108, 126, 144, 162, 180, ....

Среди выписанных чисел есть одинаковые:

36, 72, 108, 144, ... —

их называют общими кратными чисел 12 и 18, а наименьшее из них называют наименьшим общим кратным (НОК) чисел 12 и 18. Итак, НОК(12, 18) = 36.

Для любых заданных натуральных чисел можно найти НОК. Например, НОК(20, 30, 40) = 120, НОК(27, 81) = 81.

Обычные приемы отыскания НОД и НОК мы напомним в следующем параграфе.

Теорема 1. Если К — общее кратное чисел а и с, то К •: НОК(а, с).

Доказательство. По условию, К : а, К : с. Предположим противное, что К не делится на НОК(а, с). Обозначим НОК(а, с) буквой т. Заметим, что т \ а, т \ с.

По теореме о делении с остатком, число К можно представить в виде К = mq + г, где 0 < г < т. Так как К \ а, т \ а, то и г ! а. Так как, далее, К \ с, т \ с, то и г \ с. Итак, г \ а, г \ с, следовательно, г — общее кратное чисел а и с, поэтому г > т, вопреки условию 0 < г < т. Полученное противоречие означает, что сделанное предположение неверно. Значит, К \ НОК(а, с).


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, «175», 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.