ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс (Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров и др.) 1991

Алгебра, 7 класс (Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров и др.) 1991

Страница № 066.

Учебник: Алгебра: Учеб. для 7 кл. сред, шк. / Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров и др. — М.: Просвещение, 1991. — 191 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, «66», 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

§ 15. СЛОЖЕНИЕ И ВЫЧИТАНИЕ МНОГОЧЛЕНОВ

Рассмотрим треугольник, размеры которого указаны на рисунке 5. Его периметр Р равен сумме длин сторон:

Р =» (2а 4- 36)+(4а+ Ь) + (2а + 46).

Это выражение является суммой трех многочленов: 2а 4- 36, 4а 4- Ь, Рис. 5    2а 4-46. Раскроем скобки:

Р=2а 4-36 4-4а+6 4-2а 4-46.

Приведя подобные члены, получим: Р— 8а+86.

Точно так же любую алгебраическую сум^у многочленов можно преобразовать в многочлен стандартного вида. Например: (2 г.2 — т7)—(л2 — т24* З*?2) *= 2 л2 — т2 — п2 4- **—З^2 = л3 —З^2; (Заб—46с) 4- (6с—аб)—(ас — 36с)= s= Заб—46с 4-6с—аб — ас-г 36с=2с6 — ас.

В результате сложения и вычитания нескольких многочленов снова получается многочлен.

Чтобы записать алгебраическую сумму нескольких многочленов в виде многочлена стандартного вида, нужно раскрыть скобки и привести подобные члены.

Иногда сумму или разность многочленов удобно находить «столбиком»- (по аналогии со сложением и вычитанием чисел). При этом подобные члены располагаются друг под другом, например:

1) , 5а26—46с4-3сс 2) _ЪаЬс — 2а6Аас — Ьс 36с—7 ас    Забс — 3аЬ— пс4-36с

26 — Ьс —4ас    2c.bc-\-ab +5ас —4Ьс

Упражнения Упростить алгебраическую сумму многочленов (244—246).

244.    1) 8а-К-364-5а);    2) Ъх-(2х-3у)\

3)    (6а—26)—(5а4-36); 4) (4*4-2)4-(-*- 1)-

245.

2)    (0,1 с—0,4с2)—(0,1 с—0,5с5);

3)    (13х-11у4-Ю2)-(- 15*4-Юу- 152);

4)    (17a-f 126 — 14с)—(11а—106 — 14с).


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, «66», 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.