ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс (Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров и др.) 1991

Алгебра, 7 класс (Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров и др.) 1991

Страница № 158.

Учебник: Алгебра: Учеб. для 7 кл. сред, шк. / Ш. А. Алимов, Ю. М. Калягин, Ю. В. Сидоров и др. — М.: Просвещение, 1991. — 191 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, «158», 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

645.

646.

647.

648.

649.

650*.

651*.

1) / х+у=5,    2) ( 2x+y=\t

[х—t/ = l;    { 2х—у=3\

3) f х+2у = 5,    4) f х+3у=6,

\ 2х—с/=5;    I 2х + у = 7.

Найти координаты    точки пересечения прямых:

1) ( 2х-\-у=8,    2) ( Зх+у = 2,

\ 2х—у = \;    \х+2у= — 6;

3) с 2х+у=\,    4) ( 4х+3у=6,

1 у—х=4;    \ 2х+у=4.

Показать, что система уравнений не имеет решений:

\) ( у=3х,    2) ( х+у = 6,

1 бд: — 2«/ = 3;    \2х=\—2у.

Показать, что система уравнений имеет бесконечное множество решений:

1)/*+1/ = 0.    2) ( х—у=3,

\ 2х + 2у=0;    \ 2х—2у = Ь.

Показать графически, что система уравнений имеет единственное решение:

1) с 2х + 3у = \3у    2)(2х+у = 7,

\ Зх—у= 13;    1 х—2у=\.

Привести пример системы двух линейных уравнений с двумя неизвестными, решением которой являются координаты точки пересечения графика уравнения 4х-\-у=~7 с осью Ох.

Привести пример системы двух линейных уравнений с двумя неизвестными, решением которой являются координаты точки пересечения графика уравнения Ъх—7у = 1 с осью Ох. Составить линейное уравнение с двумя неизвестными, чтобы оно вместе с уравнением — х—у — 4 образовало систему

I) имеющую единственное решение; 2) имеющую бесконечное множество решений; 3) не имеющую решений.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, «158», 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.