ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 8 класс. Часть 1. Учебник (Мордкович А. Г.) 2010

Алгебра, 8 класс. Часть 1. Учебник (Мордкович А. Г.) 2010

Страница № 185.

Учебник: Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. — 12-е изд., стер. — М.: Мнемозина, 2010. — 215 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, «185», 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

то (а + с) - (b + d) — положительное число. Поэтому

а + с > b + d.

II способ. Так как а > Ь, то согласно свойству 2 а + с > Н с. Аналогично, так как с > d, то с + b > d + b.

Итак, а + с > 6 + с, & + с > ft + d. Тогда, в силу свойства транзитивности, получаем, что а + с > b + d.

Замечание. Мы привели два способа доказательства для того, чтобы вы сами выбрали тот из них, который вам больше понравился или более понятен. Кроме того, вообще полезно знакомиться с различными обоснованиями одного и того же факта.

Свойство 5. Если а, Ъ, с, d — положительные числа и a>b,c>d, то ас > bd.

Доказательство. Так как а > b и с > 0, то ас > Ьс (по свойству 3). Аналогично, так как с > d и b > 0, то cb > db.

Итак, ас > be, be > bd. Тогда согласно свойству транзитивности получаем, что ас > bd.

Обычно неравенства вида а > 6, с > d (или а < с, с < d) называют неравенствами одина-неравенства нового смысла, а неравенства а > b и с < d —

неравенствами противоположного смысла.

смысла    ~    к

Свойство 5 означает, что при умножении нера-

неравенства венств одинакового смысла, у которых ле-

противо-

вые и правые части — положительные чис-

положного    *

смысла    ла> получится неравенство того же смысла.

Свойство 6. Если аиЪ — неотрицательные числа иа>Ъ, то ап > Ьп, где п — любое натуральное число.

Смысл свойства 6 заключается в следующем: если обе части неравенства — неотрицательные числа, то их можно возвести в одну и ту же натуральную степень, сохранив знак неравенства.

Дополнение к свойству 6. Если п — нечетное число, то для любых чисел а иЬ из неравенства а > Ь следует неравенство того же смысла ап > Ьп.

7_Мордкович, 8 кл. Ч. 1

185


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, «185», 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.