ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 8 класс. Часть 1. Учебник (Мордкович А. Г.) 2010

Алгебра, 8 класс. Часть 1. Учебник (Мордкович А. Г.) 2010

Страница № 193.

Учебник: Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. — 12-е изд., стер. — М.: Мнемозина, 2010. — 215 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, «193», 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Г

У*

i

1

1

!

'

У =

г

\

\

, А

/

/\

О

X

Рис. Ill

2.    Функция у = kx2

1. Рассмотрим функцию у = х2 на луче [0; +оо); положим f(x) = х2. Пусть 0 < хх < х2.

Тогда согласно свойству 6 числовых неравенств х\ < х\у т. е. f(xi)< f(x2)• Итак, из хг < х2 следует f(xx) < f(x2). Таким образом, функция у = х2 возрастает на луче [0; +оо) (рис. 111).

2. Рассмотрим функцию у = х2 на луче (-оо; 0]; положим f(x) = х2.

Возьмем два неположительных числа хг и х2 таких, что хг < х2.

Тогда согласно свойству 3 числовых неравенств выполняется неравенство -хх > -х2. Так как числа -х1 и -х2 неотрицательны, то, возведя в квадрат обе части неравенства -хх > -х2> получим неравенство того же смысла: (-хг)2 > (-х2)2, т. е. х\ > х\. Это значит, что f (хг) > f(x2).

Итак, из неравенства хх < х2 следует, что f(xx) > f(x2). Поэтому функция у = х2 убывает на луче (-оо; 0] (рис. 111).

Мы видели, что на луче [0; +оо) из хг < х2 следует х\ < х\. Если k > 0, то kx\ < kx%; если к < 0, то kx\ > kx\. Это значит, что функция у = kx2 на луче [0; +оо) возрастает, если k > 0, и убывает, если k < 0. Аналогично получаем, что функция у = kx2 на луче (—оо, 0] убывает, если k > 0, и возрастает, если k < 0.

к

3.    Функция у = —

1. Рассмотрим функцию у - — на промежутке (0; +оо);

х

положим f(x) . Пусть х1 < х2. Так как ххих2 — положительные числа, то из хх < х2 следует — > — (см. пример 1 из § 31),

т.е. f(x1)>f(x2).


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, «193», 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.