ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (Мордкович А.Г.) 2002

Алгебра, 9 класс (Мордкович А.Г.) 2002

Страница № 013.

Учебник: Алгебра. 9 кл.: Учеб. для общеобразоват. учреждений. Мордкович А.Г. — 4-е изд. — М.: Мнемозина, 2002. — 192 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, «13», 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

3) Пользуясь рис. 1, делаем вывод: у < О на тех промежутках оси х, где график расположен ниже оси х, т.е. на открытом луче (-оо, -1,5) или на открытом луче (3, +оо).

О т в е т: х < -1,5; х > 3.

Полезно вспомнить два утверждения, которые были доказаны в курсе алгебры 8-го класса и не раз понадобятся нам в дальнейшем.

1. Если квадратный трехчлен ах2 + Ъх + сне имеет корней (т.е. его дискриминант D — отрицательное число) и если при этом а > 0, то при всех значениях х выполняется неравенство ах2 + Ьх + с > 0.

Иными словами, если D < О, а > О, то неравенство ах2 + Ьх + с> О выполняется при всех х; напротив, неравенство ах2 + Ьх + + с < 0 в этом случае не имеет решений.

2. Если квадратный трехчлен ах2 + Ьх + с не имеет корней (т.е. его дискриминант D — отрицательное число) и если при этом а< О, то при всех значениях х выполняется неравенство

ах2 + Ьх + с <0.

Иными словами, если D < 0, а < 0, то неравенство ах2 + Ьх + с< О выполняется при всех х; напротив, неравенство ах2 + Ьх + с > О в этом случае не имеет решений.

Эти утверждения суть частные случаи следующей теоремы.

I Квадратный трехчлен ах2 + Ьх + с с отрицательным дискриминантом при всех значениях х имеет знак старшего коэффициента а.

Пр и м е р 3. Решить неравенство:

а)2*2-*    + 4>0;    б)-ж2 + 3* -8>0.

Р е ш е н и е. а) Найдем дискриминант квадратного трехчлена 2*2-х + 4. ИмеемD = (-1)2-4• 2 • 4 = -31 <0. Старший коэффициент трехчлена (число 2) положителен. Значит, по теореме, при всех х выполняется неравенство 2*2 - х + 4 > 0, т.е. решением заданного неравенства служит вся числовая прямая (-оо, +оо).

б)    Найдем дискриминант квадратного трехчлена -х2 + 3* - 8. Имеем D = З2 - 4 • (-1) • (-8) = -23 < 0. Старший коэффициент трехчлена (число -1) отрицателен. Следовательно, по теореме, при


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, «13», 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.