ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (Мордкович А.Г.) 2002

Алгебра, 9 класс (Мордкович А.Г.) 2002

Страница № 064.

Учебник: Алгебра. 9 кл.: Учеб. для общеобразоват. учреждений. Мордкович А.Г. — 4-е изд. — М.: Мнемозина, 2002. — 192 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, «64», 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

каждый из которых равен а; под а1 понимается само число а». В 8-м классе мы ввели термин «квадратный корень из неотрицательного числа», дав ему точное определение: « у/а — это такое неотрицательное число, квадрат которого равен а». И так далее и тому подобное — вы сами можете привести аналогичные примеры.

В то же время были случаи, когда мы вводили термин и начинали им пользоваться, но точного определения не формулировали, ограничиваясь приблизительным истолкованием термина. Так было, в частности, с термином «функция». Почему же мы в 7-м классе, как только стали использовать понятие функции, не сформулировали точное определение, почему не сделали этого и в 8-м классе?

Дело в том, что история развития математики показывает: были понятия, которые человечество активно и длительное время использовало как рабочий инструмент, не задумываясь о том, как его определить. Лишь накопив необходимый опыт в работе с тем или иным понятием, математики начинали думать о его формальном определении. Разумеется, не всегда первые попытки определить то или иное понятие, вроде бы ясное на интуитивном уровне, оказывались удачными, их приходилось впоследствии дополнять, уточнять. Так было и с понятием функции.

Проанализируем наш опыт работы с термином «функция». В 7-м классе мы ввели термин «линейная функция», понимая под этим уравнение с двумя переменными специального вида у = kx + т. и рассматривая переменные хи у как неравноправные: х — независимая переменная, у — зависимая переменная. Затем задались вопросом: а не встречаются ли при описании реальных процессов математические модели подобного вида, но такие, у которых у выражается через х не по формуле у = kx + т, а по какой-либо иной формуле? Ответ на этот вопрос был получен сразу: встречаются. В 7-м классе, кроме упомянутой линейной функции, мы изучили математическую модель у = х2, в 8-м классе добавили к ним k

модели у = kx2, y=-,y = ax2 + bx + c,y=Jx,y = \х\.

Постепенно мы начали осознавать, что, изучая какой-либо реальный процесс, обычно обращают внимание на две переменные величины, участвующие в нем (в более сложных процессах участвуют более двух величин, но мы такие процессы пока не рассматривали). Одна из них меняется как бы сама по себе, независимо ни от чего (такую переменную чаще всего обозначают буквой х), а другая


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, «64», 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.