ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (Мордкович А.Г.) 2002

Алгебра, 9 класс (Мордкович А.Г.) 2002

Страница № 015.

Учебник: Алгебра. 9 кл.: Учеб. для общеобразоват. учреждений. Мордкович А.Г. — 4-е изд. — М.: Мнемозина, 2002. — 192 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, «15», 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Решение. Напомним геометрическое истолкование выражения | х - а | — это расстояние на координатной (числовой) прямой между точками х и а, которое обозначают р(х, а) (р — буква греческого алфавита «ро»):

\х - а | = р(х, а).

Например,

\х - 21 = р(х, 2); \х + 3,2\ = р(х, -3,2); \х\ = р(х, 0).

а)    Переведем аналитическую модель | х - 21 < 3 на геометрический язык: нужно найти на координатной прямой такие точки х, которые удовлетворяют условию р(х, 2) < 3, т.е. удалены от точки 2 на расстояние, меньшее 3. Это все точки, принадлежащие интервалу (-1, 5) (рис. 3). Интервал (-1, 5) — решение заданного неравенства.

qi 111111111111 г q_х

-12    5

Рис. 3

б)    Переведем аналитическую модель | х + 3,21 <2 на геометрический язык: нам нужно найти на координатной прямой такие точки х, которые удовлетворяют условию р(х, -3,2) < 2, т.е. удалены от точки -3,2 на расстояние, меньшее или равное 2. Это все точки, принадлежащие отрезку [-5,2, -1,2] (рис. 4). Отрезок [-5,2, -1,2] — решение заданного неравенства.

_I I I I I > I > щ    х

-5,2 -3,2 -1,2 Рис. 4

в)    Сначала разделим обе части неравенства на одно и то же положительное число 10; получим | х | > 2,7. Переведем аналитическую модель | х | > 2,7 на геометрический язык: нам нужно найти на координатной прямой такие точки х, которые удовлетворяют условию р(х, 0)> 2,7, т.е. удалены от точки Она расстояние, большее 2,7. Это все точки, принадлежащие открытым лучам (-оо, -2,7) или (2,7, +оо) (рис. 5).

О т в е т: а) -1 < х < 5; б) -5,2 < х <, -1,2; в) х < -2,7; х > 2,7.

UIUUIJq    . -Ql I I II i /1-х

-2,7 0 2,7 Рис. 5


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, «15», 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.