ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (Мордкович А.Г.) 2002

Алгебра, 9 класс (Мордкович А.Г.) 2002

Страница № 092.

Учебник: Алгебра. 9 кл.: Учеб. для общеобразоват. учреждений. Мордкович А.Г. — 4-е изд. — М.: Мнемозина, 2002. — 192 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, «92», 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

симметричная ей относительно оси у точка В того же графика. Это означает, что график четной функции симметричен относительно оси у.

Пусть у = f(x) — нечетная функция, т.е. f(—x) = -f(x) для любого хе D(f). Рассмотрим две точки графика функции: А(х; f(x)) и В(-х; f(-x)). Так как f(-x) = ~f(x), то у точек А и В абсциссы являются противоположными числами и ординаты являются противоположными числами. Эти точки симметричны относительно начала координат (рис. 74). Таким образом, для каждой точки А графика нечетной функции у = f(x) существует симметричная ей относительно начала координат точка В того же графика. Это означает, что график нечетной функции симметричен относительно начала координат.

(-*

;f(

-х)

У*

к

(*;

fix

))

в

А

X

0

X

У*

к

f(x\

и

у

—х

*

*

X

*

*

0

X

р I

ф

(

-х;

п-

Рис. 73    Рис. 74

Верны и обратные утверждения:

1)    Если график функции у =f(x) симметричен относительно оси ординат, то у = f(x) — четная функция.

В самом деле, симметрия графика функции у = f(x) относительно оси у означает, что для всех х из области определения функции справедливо равенство f(-x) = f(x), т.е. у = f(x) — четная функция.

2)    Если график функции у = f(x) симметричен относительно начала координат, то у =f(x) — нечетная функция.

Симметрия графика функции y = f(x) относительно начала координат означает, что для всех х из области определения функции справедливо равенство f(-x) = -f{x), т.е. у — f(x) — нечетная функция.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, «92», 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.