ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 9 класс (Мордкович А.Г.) 2002

Алгебра, 9 класс (Мордкович А.Г.) 2002

Страница № 093.

Учебник: Алгебра. 9 кл.: Учеб. для общеобразоват. учреждений. Мордкович А.Г. — 4-е изд. — М.: Мнемозина, 2002. — 192 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, «93», 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Пр и м е р 5. Исследовать на четность функцию

у = л19-хг .

Решение. Первый способ. Имеем

f(x) - V9 — дс2; f{-x) = л/9 - (—х)2 = %/9 - X2 . Значит, для любого

х из D(f) справедливо равенство f(-x) = f(x), т.е. функция является четной.

Второй способ. Графиком функции служит полуокружность с центром в начале координат и радиусом 3 (см. рис.52 из § 9), она симметрична относительно оси у. Это означает, что

у = V9 - X2 — четная функция. <И

§ 11. ФУНКЦИИ у = хп(пе N), ИХ СВОЙСТВА И ГРАФИКИ

Функцию вида у = х", где п = 1, 2, 3, 4, 5, ..., называют степенной функцией с натуральным показателем.

Две степенные функции мы с вами уже изучили: у = х (т.е. у — хг)иу = х2. Этим перечень наших достижений исчерпывается, ибо, начиная с п = 3, мы о функции у = хлпока ничего не знаем. Как выглядят графики функций y = x3,y = xi,y=x5,y = x6 и т.д.? Каковы свойства этих функций? Об этом и степенная пойдет речь в настоящем параграфе. Правда, в § 10 функция    одно свойство мы с вами предусмотрительно обсу

дили: доказали, что у = х4 — четная функция, а у = х3 — нечетная функция. И это, кстати, нам сейчас очень пригодится. Мы ведь знаем, что график четной функции симметричен относительно оси ординат, а график нечетной функции симметричен относительно начала координат. Значит, мы можем и для функции у = х4, и для функции у — х3 поступить так: рассмотреть эти функции на луче [0, +°°), построить их графики (на указанном луче). Затем, используя симметрию, построить график функции на всей числовой прямой и с помощью графика перечислить свойства функции по той схеме, которую мы выработали в предыдущих параграфах (добавив свойство четности).


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, «93», 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.